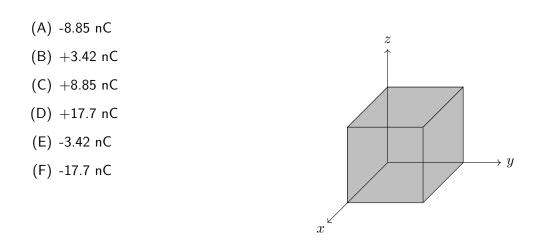
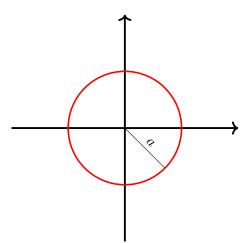

1. [*Qid 12*] (4 points) There are two arcs of charge that each create 3/4 of a circle and are centered on the origin as shown below. Both arcs have the same uniform charge density λ where λ is a positive value. What direction will the net electric field point at the origin? (All angles are given as counterclockwise from the positive x-axis.)



- 2. [*Qid 3*] (8 points) A point charge Q = -500 nC and two unknown point charges, q_1 and q_2 , are placed as shown in the figure where all positions are given in units of meters. The electric field at the origin O, due to charges Q, q_1 and q_2 , is equal to zero. The charge q_1 is closest to
 - (A) 141 nC
 - (B) -244 nC
 - (C) 244 nC
 - (D) -141 nC(E) 281 nC
 - (F) -281 nC
 - (G) -315 nC
 - (H) 315 nC


- 3. [*Qid 5*] (6 points) Three protons exist at the corners of an equilateral triangle of side length 2 cm. If two protons are held in place and the third is released from rest, what maximum speed will the third proton reach?
 - (A) 5.26 m/s
 - (B) 36.7 m/s
 - (C) 7.30 m/s
 - (D) 14.2 m/s
 - (E) 27.6 m/s
 - (F) 3.72 m/s

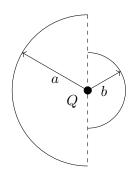
4. [*Qid 8*] (10 points) There is an electric field $\vec{E} = 3.00\hat{i} - 2.00y\hat{j}$ N/C in the region that includes a cube of side length L = 10.0 m and is oriented as shown in the figure below. What is the net charge inside the cube?

- 5. [*Qid 11*] (6 points) An object is comprised of 2,500,000 total particles. The particles can be either protons or electrons. The total charge of this object is -1.44×10^{-13} C. How many of these particles are protons?
 - (A) 600,000
 - (B) 800,000
 - (C) 900,000
 - (D) 1,900,000
 - (E) 2,500,000
 - (F) 1,300,000
 - (G) 0
 - (H) 1,700,000

- 6. [*Qid 1*] (6 points) In the Chapter 21 Part 2 recitation, we found that for an insulating ring of charge with radius a and charge density $\lambda(\theta) = \lambda_0 \sin \theta$ where θ is measured counterclockwise from the positive x-axis, the electric field at the center was $\vec{E} = -\frac{k\lambda_0\pi}{a}\hat{j}$. What is the sign of the potential at the center of this ring due to that charge distribution?
 - (A) Negative
 - (B) Zero
 - (C) Positive

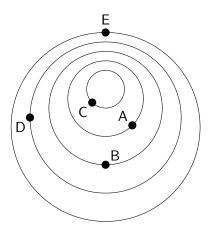
- 7. [*Qid 10*] (10 points) A very long insulating cylinder with a radius R = 4.00 cm is uniformly charged with a volume charge density $\rho = 5.00$ nC/m³. Find the magnitude of an electric field at the distance r = R/2 from the axis of the cylinder.
 - (A) 11.3 N/C
 - (B) 565 N/C
 - (C) 30.2 N/C
 - (D) 5.65 N/C
 - (E) 3.77 N/C
 - (F) 3.41 N/C
 - (G) 1130 N/C
 - (H) 341 N/C

- 8. [Qid 15] (4 points) A metal sphere with a radius R initially has a charge of -Q. A second metal sphere with a radius 2R initially has a charge of +9Q. When the switch below is closed, the two spheres will be connected by a conducting wire. What will happen when this switch is closed?
 - (A) The charges will not redistribute at all and will stay where they are.
 - (B) The charge will redistribute until there is the same magnitude of electric field just outside the surface of the spheres.
 - (C) The charge will redistribute until there is the same charge on both spheres.
 - (D) The charge will redistribute until there is the same potential at the surface of both spheres.

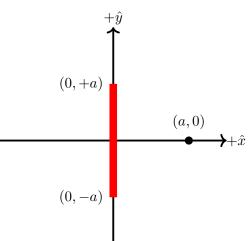


- 9. [*Qid 14*] (6 points) In the diagram below there are two very large, thin insulating sheets that are separated by a distance d. You know that the bottom sheet has a surface charge density of $+5\sigma$. You also know that the electric field at a distance d above the top plate has a magnitude of $E = \frac{2\sigma}{\epsilon_0}$ and is pointing down towards the plates. What is the surface charge density on the top plate?
 - $(A) +3\sigma$ $(B) -1\sigma$ $(C) +9\sigma$ $(D) -3\sigma$ $(E) -7\sigma$ $(F) -9\sigma$ $(A) +3\sigma$ $(C) +9\sigma$ $(C) +9\sigma$ (C)
 - (G) $+1\sigma$
 - (H) $+7\sigma$
- 10. [*Qid* 7] (8 points) A uniform electric field of magnitude 450 N/C is directed in the negative y-direction. Point A is located at (0.25m, -0.5 m) and point B is located at (0.75m, 0.4m). What is the potential difference $V_B V_A$?
 - (A) -405 V
 - (B) 315 V
 - (C) -513 V
 - (D) 221 V
 - (E) -221 V
 - (F) 405 V
 - (G) 513 V
 - (H) -315 V

- 11. [*Qid 13*] (6 points) In the diagram below there is a thick-walled, conducting cubic shell that has total charge of -5 mC. At the center of that is a thick-walled, conducting spherical shell that has a total charge of +4 mC. At the center of that is a point charge. If there is +7 mC on the OUTSIDE surface of the cube, what is the charge of the point charge?
 - (A) +8 mC
 - (B) -8 mC
 - (C) +5 mC
 - (D) -5 mC
 - (E) +16 mC
 - (F) +1 mC
 - (G) -1 mC
 - (H) -16 mC



- 12. [*Qid 9*] (4 points) A point charge with magnitude Q is situated in the centrum of two imaginary hemispheres of radii a and b as shown below. Compare the fluxes Φ_a and Φ_b due to this point charge if you know the charge is negative.
 - (A) $\Phi_a > \Phi_b$, Φ_a is positive and Φ_b is negative
 - (B) $\Phi_a < \Phi_b$, Φ_a is negative and Φ_b is positive
 - (C) $\Phi_a = \Phi_b$, both fluxes are positive
 - (D) $\Phi_a = \Phi_b$, both fluxes are negative
 - (E) $\Phi_a > \Phi_b$, both fluxes are positive
 - (F) $\Phi_a < \Phi_b$, both fluxes are negative


- 13. [*Qid 4*] (8 points) In a particular region of space, a 300 mC charge experiences the effects of a potential energy function given by $U(x, y, z) = 4x^2y + 3xyz 5y^2z^3$. What is the electric field vector at the point (3,2,-1)? Assume all values are in SI units.
 - (A) $-108\hat{\imath} 9\hat{\jmath} + 72\hat{k}$
 - (B) $-42\hat{\imath} 47\hat{\jmath} + 42\hat{k}$
 - (C) $-30\hat{\imath} + 51\hat{\jmath} + 78\hat{k}$
 - (D) $-72\hat{\imath} + 18\hat{\jmath} + 20\hat{k}$
 - (E) $-360\hat{\imath} 30\hat{\jmath} + 240\hat{k}$
 - (F) $-240\hat{\imath} + 60\hat{\jmath} 66.7\hat{k}$
 - (G) $-140\hat{\imath} 157\hat{\jmath} + 140\hat{k}$
 - (H) $-100\hat{\imath} + 170\hat{\jmath} + 260\hat{k}$

- 14. [*Qid* 6] (4 points) The figure below shows a series of equipotential surfaces. At which point does the electric field have the greatest magnitude?
 - (A) Point A
 - (B) Point B
 - (C) Point C
 - (D) Point D
 - (E) Point E

15. [Qid 2] (10 points) A non-uniform linear charge characterized by the charge per unit length $\lambda(y)$ is located on the y-axis extending from y = -a to y = +a. Which of the following integrals give the electric field \vec{E} on the x-axis at x = +a? Note that $\lambda(y)$ is not a constant value.

$$\begin{aligned} \text{(A)} \quad \vec{E} &= \int_{-a}^{+a} \frac{k\lambda(y)dy}{a^2} \,\hat{\imath} \\ \text{(B)} \quad \vec{E} &= \int_{-a}^{+a} \frac{ka\lambda(y)dy}{(y^2 + a^2)^{3/2}} \,\hat{\imath} - \int_{-a}^{+a} \frac{ky\lambda(y)dy}{(y^2 + a^2)^{3/2}} \,\hat{\jmath} \\ \text{(C)} \quad \vec{E} &= \int_{-a}^{+a} \frac{k\lambda(y)dy}{(y^2 + a^2)^2} \,\hat{\imath} + \int_{-a}^{+a} \frac{ky^2\lambda(y)dy}{(y^2 + a^2)^{3/2}} \,\hat{\jmath} \\ \text{(D)} \quad \vec{E} &= 0 \\ \text{(E)} \quad \vec{E} &= \lambda(y) \int_{-a}^{+a} \frac{kady}{(y^2 + a^2)^{3/2}} \,\hat{\imath} - \lambda(y) \int_{-a}^{+a} \frac{kydy}{(y^2 + a^2)^{3/2}} \,\hat{\jmath} \\ \text{(F)} \quad \vec{E} &= \lambda(y) \int_{-a}^{+a} \frac{kdy}{(y^2 + a^2)^2} \,\hat{\imath} \\ \text{(G)} \quad \vec{E} &= \lambda(y) \int_{-a}^{+a} \frac{kdy}{(y^2 + a^2)^2} \,\hat{\imath} + \lambda(y) \int_{-a}^{+a} \frac{ky^2dy}{(y^2 + a^2)^{3/2}} \,\hat{\jmath} \\ \text{(H)} \quad \vec{E} &= \int_{-a}^{+a} \frac{ka\lambda(y)dy}{(y^2 + a^2)^{3/2}} \,\hat{\imath} \end{aligned}$$

