Physics 207 - Exam 2

Sections (207-212, 543-583) - October $14^{\text {th }}, 2021$

Right answer indicated by \leftarrow. Number of points indicated in parenthesis, zero otherwise

1) $[10 \mathrm{pts}]$ A parallel-plate capacitor C is connected to a battery of emf ε. You slide between its plates a slab of dielectric with dielectric constant κ, completely filling the space between its plates. If the initial charge is Q and the initial stored energy is U, what are the charge and energy after the dielectric has been slid into place and the system is in equilibrium?
A. $\kappa Q, U / \kappa$
(5)
B. $\kappa Q, \kappa U$
(10) \leftarrow
C. $Q / \kappa, \kappa U$
D. $Q / \kappa, U / \kappa$
E. $Q / \kappa, U / \kappa^{2}$
F. $Q / \kappa, \kappa^{2} U$
G. $\kappa^{2} Q, \kappa^{2} U$
(0)

2) $[6 \mathrm{pts}]$ The three capacitors shown below have the same capacitance $C_{1}=C_{2}=C_{3}=3 \mu \mathrm{~F}$. The equivalent capacitance is
A. $4.5 \mu \mathrm{~F}$
(3) (confuse parallel and series connection)
B. $2.0 \mu \mathrm{~F} \quad$ (6) \leftarrow
C. $9.0 \mu \mathrm{~F} \quad$ (0)
D. $1.0 \mu \mathrm{~F}$
(0)
E. $12.0 \mu \mathrm{~F}(0)$
F. $6.5 \mu \mathrm{~F} \quad(0)$

3) [10 pts] Consider the same capacitor network as in the previous problem. If we apply $V_{\mathrm{a}}=3$ V and $V_{\mathrm{b}}=-15 \mathrm{~V}$, find the charge on the first and on the third capacitor:
A. $40.5 \mu \mathrm{C}, 81.0 \mu \mathrm{C}$
(5) (if they confuse parallel and series connections)
B. $26.0 \mu \mathrm{C}, 42.5 \mu \mathrm{C}$
(0)
C. $18.0 \mu \mathrm{C}, 36.0 \mu \mathrm{C}$
(10) \leftarrow
D. $36.0 \mu \mathrm{C}, 18.0 \mu \mathrm{C}$
(5) (if they confuse order of capacitors)
E. $53.0 \mu \mathrm{C}, 21.0 \mu \mathrm{C}$
(0)
F. $81.0 \mu \mathrm{C}, 40.5 \mu \mathrm{C}$
(2) (confuse both parallel and series and order of capacitors)
4) $[10 \mathrm{pts}] \mathrm{A} 20 \mu \mathrm{~F}$ capacitor has plate A at +60 V and plate B at -20 V . Find the charges on plates A and B .
A. $1.2 \mathrm{mC}, \quad-0.4 \mathrm{mC} \quad(0)$
B. $-1.2 \mathrm{mC}, \quad 0.4 \mathrm{mC}$ (0)
C. $1.6 \mathrm{mC},-1.6 \mathrm{mC}$ (10)
D. $-1.6 \mathrm{mC}, \quad 1.6 \mathrm{mC}$ (5)
E. $0.8 \mathrm{mC},-0.8 \mathrm{mC}$,
F. $-0.4 \mathrm{mC},-1.2 \mathrm{mC}$.
5) $[8$ pts] For identical light bulbs A and B, compare their total power output ($\mathrm{A}+\mathrm{B}$) when they are in parallel (p) and in series (s). That is, find $P_{\mathrm{p} /} P_{\mathrm{s}}$.

A. $P_{\mathrm{p} /} P_{\mathrm{s}}=4$
(8) \leftarrow
B. $P_{\mathrm{p}} / P_{\mathrm{s}}=2$
C. $P_{\mathrm{p}} / P_{\mathrm{s}}=1$
D. $P_{\mathrm{p} /} P_{\mathrm{s}}=0.75$ (0)
E. $P_{\mathrm{p} /} P_{\mathrm{s}}=0.5$
F. $P_{\mathrm{p} /} P_{\mathrm{s}}=0.25$ (0)
6) [10 pts] The circuit below contains a non-ideal battery with emf $\varepsilon=12 \mathrm{~V}$, and an internal resistance $r=2 \Omega$. The battery is connected to the a circuit with a voltmeter, an ammeter, and two identical resistances of $R=4 \Omega$. The voltmeter and ammeter are ideal. In terms of the quantities given what are the readings of the voltmeter before the switch is closed (V_{0}) and of the ammeter after the switch is closed $\left(\mathrm{I}_{1}\right)$?
A. $\mathrm{V}_{0}=6 \mathrm{~V}, \mathrm{I}_{1}=1.2 \mathrm{~A}$
B. $V_{0}=0 \quad V, I_{1}=2 \mathrm{~A}$
C. $V_{0}=6 \quad V, I_{1}=2 \mathrm{~A}$
D. $\mathrm{V}_{0}=12 \mathrm{~V}, \mathrm{I}_{1}=3 \mathrm{~A}$
E. $\mathrm{V}_{0}=12 \mathrm{~V}, \mathrm{I}_{1}=0 \mathrm{~A}$
F. $\mathrm{V}_{0}=0 \mathrm{~V}, \mathrm{I}_{1}=3 \mathrm{~A}$

7) [8 pts] Consider a wire of area $A=4 \mathrm{~mm}^{2}$ and length $l=3 \mathrm{~m}$. If a voltage difference of 4.5 V is applied to its ends, then a current of 2 A flows through it. Find the resistivity ρ.
A. $3.0 \times 10^{-3} \Omega-\mathrm{m}$
B. $6.0 \times 10^{-6} \Omega / \mathrm{m}$
C. $9.0 \times 10^{-9} \Omega / \mathrm{m}$
D. $3.0 \times 10^{-6} \Omega / \mathrm{m}$

E. $3.0 \times 10^{-6} \Omega-\mathrm{m}$
8) [10 pts] For the DC circuit shown below the switch S is open. The current through the 28 V battery and the voltage difference V_{ab} between the contacts a and b of the open switch are

A. $4.0 \mathrm{~A},-31.5 \mathrm{~V}$
(0)
B. $1.2 \mathrm{~A}, 11.5 \mathrm{~V}$
C. $1.2 \mathrm{~A},-15 \mathrm{~V}$
D. $3.5 \mathrm{~A}, 52.5 \mathrm{~V}$
E. $3.5 \mathrm{~A}, 31.5 \mathrm{~V}$
$(10) \leftarrow$
F. $4.0 \mathrm{~A}, 22 \mathrm{~V}$
(0)
9) $[8 \mathrm{pts}]$ For the DC circuit above the switch S is now closed. Let rightward correspond to positive currents I_{1} and I_{2} through the 5Ω and 6Ω resistors. Taking a clockwise loop direction, the Kirchoff loop equation for the upper loop (containing both batteries) is:
A. $28 \mathrm{~V}-(5 \Omega) \mathrm{I}_{1}-(6 \Omega) \mathrm{I}_{2}+42 \mathrm{~V}=0$
B. $-28 \mathrm{~V}+(5 \Omega) \mathrm{I}_{1}+(6 \Omega) \mathrm{I}_{2}-42 \mathrm{~V}=0$
C. $28 \mathrm{~V}+(5 \Omega) \mathrm{I}_{1}-(9 \Omega) \mathrm{I}_{2}+42 \mathrm{~V}=0$
D. $28 \mathrm{~V}-(5 \Omega) \mathrm{I}_{1}+(6 \Omega) \mathrm{I}_{2}-42 \mathrm{~V}=0$
(8) \leftarrow
E. $-28 \mathrm{~V}+(5 \Omega) \mathrm{I}_{1}+(6 \Omega) \mathrm{I}_{2}-(3 \Omega)\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right)=0$
F. $28 \mathrm{~V}+(5 \Omega) \mathrm{I}_{1}-(3 \Omega)\left(\mathrm{I}_{1}+\mathrm{I}_{2}\right)+42 \mathrm{~V}=0$
10) [10 pts] The capacitor in the circuit shown below is initially uncharged. At $t=0$ the switch is closed. The currents through the resistor R_{1} initially $(t=0)$ and after a very long time are:

A. $3.0 \mathrm{~A}, 4.2 \mathrm{~A}$
(3)
B. $4.2 \mathrm{~A}, 2.0 \mathrm{~A}$
C. $2.0 \mathrm{~A}, 3.0 \mathrm{~A}$
D. $4.2 \mathrm{~A}, 3.0 \mathrm{~A}$ (10)
E. $5.2 \mathrm{~A}, 1.0 \mathrm{~A}$
F. $2.0 \mathrm{~A}, 5.2 \mathrm{~A}$
11) [10 pts] In the previous problem after the switch had been closed for a long time the capacitor became fully charged at $72 \mu \mathrm{C}$. The switch is now opened at the new initial time. (i) What is the initial current I_{0} through resistor R_{3} ? (ii) The capacitor initially stores an electrical energy U_{0}. After the current has decreased to $I_{0} / 3$ it stores an electrical energy U. What is U / U_{0} ?
A. $6.0 \mathrm{~A}, 1 / 3$
(2)
B. $4.2 \mathrm{~A}, 1 / 6$
(0)
C. $2.0 \mathrm{~A}, 1 / 9$
(10)
D. $2.0 \mathrm{~A}, 2 / 3$
E. $6.0 \mathrm{~A}, 1 / 9$
F. $4.2 \mathrm{~A}, 5 / 6$
