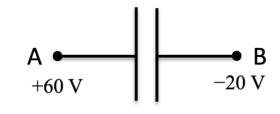
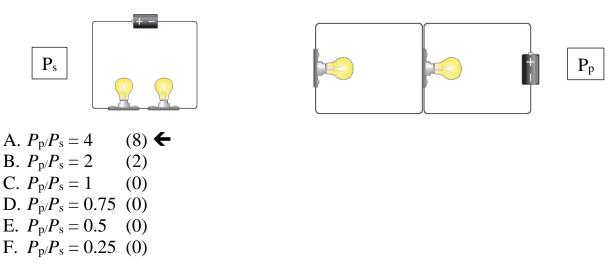

Physics 207 – Exam 2

Sections (207-212, 543-583) – October 14th, 2021

1) [10 pts] A parallel-plate capacitor C is connected to a battery of emf \mathcal{E} . You slide between its plates a slab of dielectric with dielectric constant κ , completely filling the space between its plates. If the initial charge is Q and the initial stored energy is U, what are the charge and energy after the dielectric has been slid into place and the system is in equilibrium?

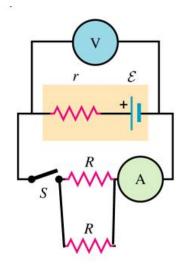


- 2) [6 *pts*] The three capacitors shown below have the same capacitance $C_1 = C_2 = C_3 = 3 \mu F$. The equivalent capacitance is
 - A. 4.5 μ F (3) (confuse parallel and series connection)
 - B. 2.0 μF (6) **←**
 - C. 9.0 µF (0)
 - D. 1.0 µF (0)
 - E. 12.0 μF (0)
 - F. $6.5 \,\mu\text{F}$ (0)

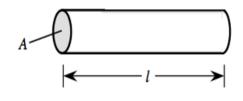


- 3) [10 pts] Consider the same capacitor network as in the previous problem. If we apply $V_a = 3$ V and $V_b = -15$ V, find the charge on the *first* and on the *third* capacitor:
 - A. 40.5 μ C, 81.0 μ C (5) (if they confuse parallel and series connections)
 - B. 26.0 μC, 42.5 μC (0)
 - C. 18.0 μC, 36.0 μC (10) **←**
 - D. 36.0 μ C, 18.0 μ C (5) (if they confuse order of capacitors)
 - E. 53.0 μ C, 21.0 μ C (0)
 - F. 81.0 μ C, 40.5 μ C (2) (confuse both parallel and series and order of capacitors)

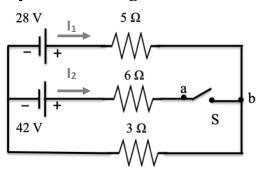
- 4) [10 pts] A 20 μ F capacitor has plate A at +60 V and plate B at -20V. Find the charges on plates A and B.
 - A. 1.2 mC, -0.4 mC (0)B. -1.2 mC, 0.4 mC (0)C. 1.6 mC, -1.6 mC (10) 🗲 D. -1.6 mC, 1.6 mC (5) E. 0.8 mC, -0.8 mC, (2)F. -0.4 mC, -1.2 mC. (0)



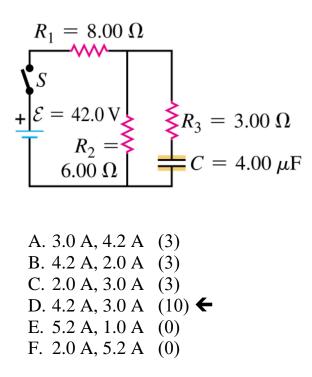
5) [8 *pts*] For identical light bulbs A and B, compare their <u>total power output</u> (A+B) when they are in parallel (p) and in series (s). That is, find P_{p}/P_{s} .



6) [10 pts] The circuit below contains a non-ideal battery with emf \mathcal{E} =12 V, and an internal resistance r =2 Ω . The battery is connected to the a circuit with a voltmeter, an ammeter, and two identical resistances of R = 4 Ω . The voltmeter and ammeter are ideal. In terms of the quantities given what are the readings of the voltmeter before the switch is closed (V₀) and of the ammeter after the switch is closed (I₁)?


> A. $V_0=6$ V, $I_1=1.2$ A (0) B. $V_0=0$ V, $I_1=2$ A (0) C. $V_0=6$ V, $I_1=2$ A (0) D. $V_0=12$ V, $I_1=3$ A (10) \leftarrow E. $V_0=12$ V, $I_1=0$ A (5) F. $V_0=0$ V, $I_1=3$ A (5)

- 7) [8 *pts*] Consider a wire of area $A=4 \text{ mm}^2$ and length l=3 m. If a voltage difference of 4.5 V is applied to its ends, then a current of 2 A flows through it. Find the resistivity ρ .
 - A. $3.0x10^{-3} \Omega$ -m (0) B. $6.0x10^{-6} \Omega/m$ (0) C. $9.0x10^{-9} \Omega/m$ (0) D. $3.0x10^{-6} \Omega/m$ (2) E. $3.0x10^{-6} \Omega$ -m (8) F. $2.0x10^{-9} \Omega$ -m (0)


8) [10 pts] For the DC circuit shown below the switch S is open. The current through the 28V battery and the voltage difference V_{ab} between the contacts a and b of the open switch are

- A. 4.0 A, -31.5 V (0) B. 1.2 A, 11.5 V (0) C. 1.2 A, -15 V (0) D. 3.5 A, 52.5 V (8) E. 3.5 A, 31.5 V (10) \leftarrow F. 4.0 A, 22 V (0)
- 9) [8 *pts*] For the DC circuit above the switch S is now closed. Let rightward correspond to positive currents I_1 and I_2 through the 5 Ω and 6 Ω resistors. Taking a clockwise loop direction, the Kirchoff loop equation for the upper loop (containing both batteries) is:

A.
$$28V - (5\Omega)I_1 - (6\Omega)I_2 + 42V=0$$
 (4)
B. $-28V + (5\Omega)I_1 + (6\Omega)I_2 - 42V=0$ (4)
C. $28V + (5\Omega)I_1 - (9\Omega)I_2 + 42V=0$ (0)
D. $28V - (5\Omega)I_1 + (6\Omega)I_2 - 42V=0$ (8)
E. $-28V + (5\Omega)I_1 + (6\Omega)I_2 - (3\Omega)(I_1+I_2)=0$ (0)
F. $28V + (5\Omega)I_1 - (3\Omega)(I_1+I_2) + 42V=0$ (0)

10) [10 pts] The capacitor in the circuit shown below is initially uncharged. At t = 0 the switch is closed. The currents through the resistor R_1 initially (t=0) and after a very long time are:

11) [10 pts] In the previous problem after the switch had been closed for a long time the capacitor became fully charged at 72 μ C. The switch is now opened at the new initial time. (i) What is the initial current I_0 through resistor R_3 ? (ii) The capacitor initially stores an electrical energy U_0 . After the current has decreased to $I_0/3$ it stores an electrical energy U. What is U/U_0 ?

A. 6.0 A, 1/3	(2)
B. 4.2 A, 1/6	(0)
C. 2.0 A, 1/9	(10) 🗲
D. 2.0 A, 2/3	(5)
E. 6.0 A, 1/9	(5)
F. 4.2 A, 5/6	(0)

Scratch Paper