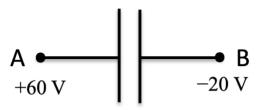

Physics 207 – Exam 2

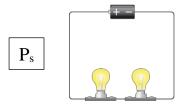
Sections (207-212, 543-583) – October 14th, 2021

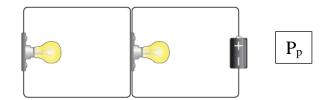
- 1) [10 pts] A parallel-plate capacitor C is connected to a battery of emf E. You slide between its plates a slab of dielectric with dielectric constant κ , completely filling the space between its plates. If the initial charge is Q and the initial stored energy is U, what are the charge and energy after the dielectric has been slid into place and the system is in equilibrium?
 - A. κQ , U/κ
 - B. κQ , κU
 - C. Q/κ , κU
 - D. Q/κ , U/κ
 - E. Q/κ , U/κ^2
 - F. Q/κ , $\kappa^2 U$
 - G. $\tilde{\kappa}^2 Q$, $\kappa^2 U$

- 2) [6 pts] The three capacitors shown below have the same capacitance $C_1 = C_2 = C_3 = 3 \mu F$. The equivalent capacitance is
 - Α. 4.5 μF
 - B. 2.0 μF
 - C. 9.0 µF
 - D. 1.0 μF
 - E. 12.0 μF
 - $F.~6.5~\mu F$


- 3) [10 pts] Consider the same capacitor network as in the previous problem. If we apply $V_a = 3$ V and $V_b = -15$ V, find the charge on the *first* and on the *third* capacitor:
 - Α. 40.5 μC, 81.0 μC
 - B. $26.0 \mu C$, $42.5 \mu C$
 - C. $18.0 \mu C$, $36.0 \mu C$
 - D. $36.0 \mu C$, $18.0 \mu C$
 - E. $53.0 \mu C$, $21.0 \mu C$
 - F. $81.0 \mu C$, $40.5 \mu C$

4) [10 pts] A 20 μF capacitor has plate A at +60 V and plate B at -20V. Find the charges on plates A and B.



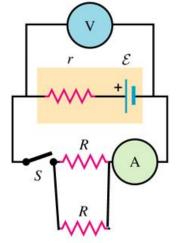

B.
$$-1.2 \text{ mC}$$
, 0.4 mC

E.
$$0.8 \text{ mC}$$
, -0.8 mC ,

5) [8 pts] For identical light bulbs A and B, compare their total power output (A+B) when they are in parallel (p) and in series (s). That is, find P_p/P_s .

A.
$$P_{p}/P_{s} = 4$$

B.
$$P_{p}/P_{s} = 2$$


C.
$$P_{p}/P_{s} = 1$$

D.
$$P_p/P_s = 0.75$$

E.
$$P_{\rm p}/P_{\rm s} = 0.5$$

F.
$$P_p/P_s = 0.25$$

6) [10 pts] The circuit below contains a non-ideal battery with emf $E=12\,$ V, and an internal resistance $r=2\,$ Ω . The battery is connected to the a circuit with a voltmeter, an ammeter, and two identical resistances of $R=4\,$ Ω . The voltmeter and ammeter are ideal. In terms of the quantities given what are the readings of the voltmeter before the switch is closed (V₀) and of the ammeter after the switch is closed (I₁)?

A.
$$V_0=6$$
 V, $I_1=1.2$ A

B.
$$V_0=0$$
 V, $I_1=2$ A

C.
$$V_0=6$$
 V, $I_1=2$ A

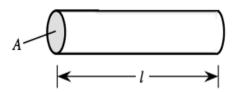
D.
$$V_0=12 \text{ V}, I_1=3 \text{ A}$$

E.
$$V_0=12 \text{ V}, I_1=0 \text{ A}$$

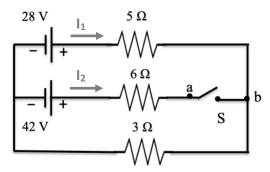
F.
$$V_0=0$$
 V, $I_1=3$ A

7) [8 pts] Consider a wire of area A=4 mm² and length l=3 m. If a voltage difference of 4.5 V is applied to its ends, then a current of 2 A flows through it. Find the resistivity ρ .

A.
$$3.0 \times 10^{-3} \Omega$$
-m


B.
$$6.0x10^{-6} \Omega/m$$

C.
$$9.0x10^{-9} \Omega/m$$


D.
$$3.0 \times 10^{-6} \Omega/m$$

E.
$$3.0 \times 10^{-6} \Omega$$
-m

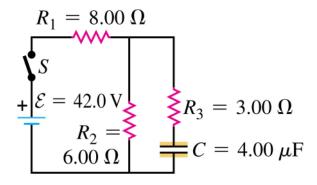
F.
$$2.0x10^{-9}$$
 Ω-m

8) [10 pts] For the DC circuit shown below the switch S is open. The current through the 28V battery and the voltage difference V_{ab} between the contacts a and b of the open switch are

9) [8 pts] For the DC circuit above the switch S is now closed. Let rightward correspond to positive currents I_1 and I_2 through the 5 Ω and 6 Ω resistors. Taking a clockwise loop direction, the Kirchoff loop equation for the upper loop (containing both batteries) is:

A.
$$28V - (5\Omega)I_1 - (6\Omega)I_2 + 42V = 0$$

B.
$$-28V + (5\Omega)I_1 + (6\Omega)I_2 - 42V = 0$$


C.
$$28V + (5\Omega)I_1 - (9\Omega)I_2 + 42V = 0$$

D.
$$28V - (5\Omega)I_1 + (6\Omega)I_2 - 42V = 0$$

E.
$$-28V + (5\Omega)I_1 + (6\Omega)I_2 - (3\Omega)(I_1 + I_2) = 0$$

F.
$$28V + (5\Omega)I_1 - (3\Omega)(I_1 + I_2) + 42V = 0$$

10) [10 pts] The capacitor in the circuit shown below is initially uncharged. At t = 0 the switch is closed. The currents through the resistor R_1 initially (t=0) and after a very long time are:

- A. 3.0 A, 4.2 A
- B. 4.2 A, 2.0 A
- C. 2.0 A, 3.0 A
- D. 4.2 A, 3.0 A
- E. 5.2 A, 1.0 A
- F. 2.0 A, 5.2 A

11) [10 pts] In the previous problem after the switch had been closed for a long time the capacitor became fully charged at 72 μ C. The switch is now opened at the new initial time. (i) What is the initial current I_0 through resistor R_3 ? (ii) The capacitor initially stores an electrical energy U_0 . After the current has decreased to $I_0/3$ it stores an electrical energy U. What is U/U_0 ?

- A. 6.0 A, 1/3
- B. 4.2 A, 1/6
- C. 2.0 A, 1/9
- D. 2.0 A, 2/3
- E. 6.0 A, 1/9
- F. 4.2 A, 5/6

Scratch Paper