Physics 207 – Exam 1

Sections (207-212, 543-583) – September 23rd, 2021

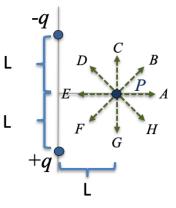
Right answer indicated by ←. Number of points indicated in parenthesis, zero otherwise

- [7 pts] Point P is at 3equal distance from two fixed point charges +q and q as shown. If a <u>negative</u> point charge is placed on P, which dashed arrow on the figure shows the direction of the net electrical <u>force</u> felt by the charge at P due to the fixed charges?
 - A. A (2)
 E. E (2)

 B. B
 F. F

 C. C (4)
 G. G (7) ←

 D. D
 H. H

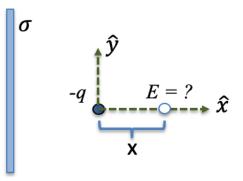


- 2) [8 pts] In the previous problem, if the charge at point P is -q, the magnitude of the force felt by that charge is :
 - A. $\frac{2kq^2 L}{(2L^2)^{3/2}}$ (8) B. $\frac{kq^2 L}{(2L^2)^{3/2}}$ (6) C. $\frac{2kq^2 L}{(L^2)^{3/2}}$ (4) D. $\frac{2kq^2 L^2}{(2L^2)^3}$ E. $\frac{kq^2 L}{(2L^2)^3}$

F.
$$\frac{2\kappa q L}{(L^2)^3}$$

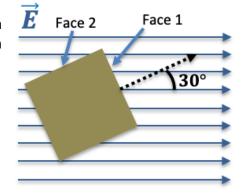
3) [8 pts] A negative point charge –q is at the coordinate origin, at some distance from an infinitely long plate with uniform charge σ per unit area as shown in the picture. The electric field a distance x from the point charge as shown in the figure is:

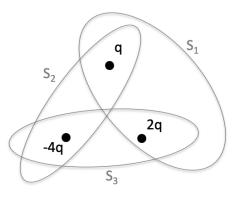
A.
$$\left(\frac{\sigma}{2\varepsilon_{0}} - k\frac{q}{x^{2}}\right) \hat{x}$$
 (8)
B. $\left(\frac{\sigma}{2\varepsilon_{0}} + k\frac{q}{x^{2}}\right) \hat{x}$ (4)
C. $\left(-\frac{\sigma}{2\varepsilon_{0}} - k\frac{q}{x^{2}}\right) \hat{x}$ (5)
D. $\left(-\frac{\sigma}{2\varepsilon_{0}} + k\frac{q}{x^{2}}\right) \hat{x}$ (2)
E. $\left(\frac{\sigma}{2\varepsilon_{0}} - k\frac{q}{x}\right) \hat{x}$ (3)
F. $\left(\frac{\sigma}{2\varepsilon_{0}} + k\frac{q}{x}\right) \hat{x}$ (3)
G. $\left(-\frac{\sigma}{2\varepsilon_{0}} - k\frac{q}{x}\right) \hat{x}$ (1)
H. $\left(-\frac{\sigma}{2\varepsilon_{0}} + k\frac{q}{x}\right) \hat{x}$ (1)

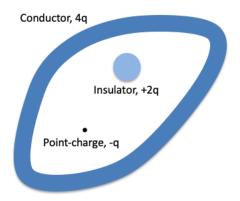


2

- 4) [8 pts] a cube of side L is tilted 30 degrees with respect to a homogenous external electric field of magnitude E. The flux through the faces 1 and 2 indicated in the picture are (face 1, face 2):
 - A. $EL^2 \cos(30)$, $-EL^2 \sin(30)$ (8) \leftarrow
 - B. $EL^2 \cos(30)$, $-EL^2 \cos(30)$ (4)
 - C. $EL^2 \sin(30)$, $-EL^2 \sin(30)$ (4)
 - D. $EL^2 \sin(30)$, $-EL^2 \cos(30)$
 - E. $-EL^2 \cos(30)$, $EL^2 \sin(30)$ (2)
 - F. $-EL^2 \cos(30)$, $EL^2 \cos(30)$ (2) G. $-EL^2 \sin(30)$, $EL^2 \sin(30)$ (2)
 - $= \frac{-EL}{\sin(30)}, \quad EL^{-} \sin(30) \quad (2)$
 - H. $-EL^2 \sin(30)$, $EL^2 \cos(30)$
- 5) [7 pts] Three Gaussian surfaces S_1 , S_2 , S_3 are enclosing charges as shown. The flux enclosed by each corresponding surface can be ordered from the most positive to the most negative as:
 - A. $\Phi_1 > \Phi_2 > \Phi_3$ (4)
 - B. $\Phi_1 > \Phi_3 > \Phi_2$ (7) **\leftarrow**
 - C. $\Phi_2 > \Phi_3 > \Phi_1$
 - D. $\Phi_2 > \Phi_1 > \Phi_3$ (4)
 - E. $\Phi_3 > \Phi_1 > \Phi_2$ (4)
 - F. $\Phi_3 > \Phi_2 > \Phi_1$
- 6) [7 pts] A closed hollow conductor with net charge 4q encloses inside a point-like charge -q, and an insulator with charge 2q as shown in the figure. Find the total charge distributed in the <u>outer</u> <u>surface</u> of the conductor:
 - A. -2q
 - B. -1q
 - C. 0q
 - D. 1q
 - E. 2 q
 - F. 3 q G. 4 q (2)
 - H. 5q (7) €
- 7) [8 pts] Two thin concentric spherical shells have radii R₁ and R₂ with R₁ < R₂. A total charge of -2Q is uniformly spread in the inner shell and a total charge of Q is spread on the outer shell. The electric field in the region between the two shells, at R1 < r < R2, is
 - A. pointing outward with magnitude $k Q/r^2$ (2)
 - B. pointing inward with magnitude $k Q/r^2$ (4)
 - C. pointing outward with magnitude $k 2Q/r^2$ (6)
 - D. pointing inward with magnitude $k 2Q/r^2$ (8) \leftarrow
 - E. pointing outward with magnitude k Q/r
 - F. pointing inward with magnitude k Q/r (2)
 - G. pointing outward with magnitude k 2Q/r
 - H. pointing inward with magnitude k 2Q/r (2)

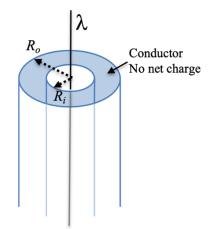






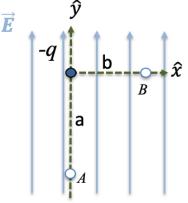
8) [8 pts] A long string with charge density per unit length λ , is at the center of long hollow cylindrical conductor with no net charge, internal radius of R_i and external radius R_o as shown in the figure. The charge per unit area σ induced **in the inner surface** of the conductor is:

A.	σ	=	$\frac{+\lambda}{2\pi R_i}$	(5)
В.	σ	=	$\frac{-\lambda}{2\pi R_i}$	(8) 🗲
C.	σ	=	$\frac{+\lambda}{\pi R_i}$	(2)
D.	σ	=	$\frac{-\lambda}{\pi R_i}$	(3)
E.	σ	=	$\frac{+\lambda}{2\pi R_i^2}$	(1)
F.	σ	=	$\frac{-\lambda}{2\pi R_i^2}$	(2)
G.	σ	=	$\frac{+\lambda}{\pi R_i^2}$	(1)
Н.	σ	=	$\frac{1}{\pi (R_0^2 - R_0^2)}$	$(2i)^{2}$



9) [8 pts] In a region of space there is a constant electric field of magnitude E₀ in the Y direction, superimposed with the electric field of a point charge -q at the origin. Compute the difference in electric potential at points B and A, V_B-V_A, as located in the figure.

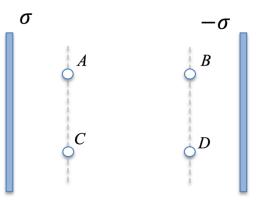
A.
$$+E_0a + kq \frac{(a-b)}{ab}$$
 (3)
B. $+E_0a - kq \frac{(a-b)}{ab}$ (5)
C. $-E_0a + kq \frac{(a-b)}{ab}$ (4)
D. $-E_0a - kq \frac{(a-b)}{ab}$ (8)
E. $+E_0b + kq \frac{(a-b)}{ab}$ (2)
F. $+E_0b - kq \frac{(a-b)}{ab}$ (4)
G. $-E_0b + kq \frac{(a+b)}{ab}$
H. $-E_0b - kq \frac{(a+b)}{ab}$



- 10) [8 pts] At locations A and B, the electric potential has the values V_A =20 V and V_B = 10 V. A small particle with charge q = -2 μ C is released from rest at one of the locations and passes through the other location with kinetic energy K. Which of the following statement is true?
 - A. The other location is A with K= $20 \mu J$ (2)
 - B. The other location is A with $K = 40 \mu J$ (2)
 - C. The other location is A with K= 60 μ J (8) \leftarrow
 - D. The other location is A with K= $80 \mu J$ (2)
 - E. The other location is B with K= $20 \mu J$
 - F. The other location is B with K= 40 μ J
 - G. The other location is B with K= 60 μ J (4)
 - H. The other location is B with K= 80 μ J

11) [7 pts] Two equal but opposite charged plates with uniformly distributed charges are as shown. Which of the following statement is **incorrect** ? [6 pts]

- A. Position A is at a higher potential than position B
- B. Position A is at a higher potential than position D
- C. Position C is at a higher potential than position A (7) \leftarrow
- D. Position C is at a higher potential than position B
- E. Position C is at a higher potential than position D



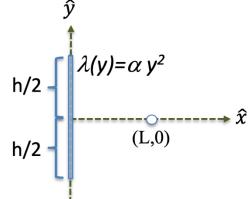
- 12) [8 pts] A short line of length **h** is centered at the origin, aligned with the y-axis and has a non-uniform linear charge density $\lambda(y) = \alpha y^2$, where α is a known constant. The electric field produced by the charged line at the point (L,0) is given by :
 - A. $E_x(L,0) = \int_{-h/2}^{h/2} \frac{k \alpha y^2 L \, dy}{(L^2 + y^2)^{3/2}}$ (8) \bigstar

B.
$$E_{\chi}(L,0) = \int_{-h/2}^{h/2} \frac{k \alpha y^3 \, dy}{(L^2 + y^2)^{3/2}}$$
 (6)

- C. $E_{\chi}(L,0) = \int_{-h/2}^{h/2} \frac{k \alpha y^2 \, dy}{(L^2 + y^2)}$ (4)
- D. $E_x(L,0) = \int_{-h/2}^{h/2} \frac{k\alpha y^2 L dy}{(L^2 + y^2)^3}$

E.
$$E_x(L,0) = \int_{-h/2}^{h/2} \frac{k \alpha y^3 L^2 dy}{(L^2 + y^2)^3}$$

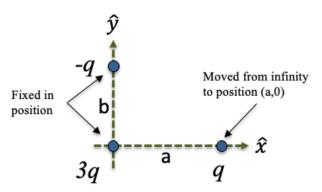
F.
$$E_x(L,0) = \int_{-h/2}^{h/2} \frac{k\alpha L^2 dy}{(L^2 + y^2)^3}$$



13) [8 pts] A charge of value 3q is fixed at the origin, and a charge -q is fixed at position (0,b). A third charge of value q is then moved from infinity to position (a,0) as shown in the figure. Assuming the potential of the third charge at infinity is zero, the work done <u>by the electric force</u> as the third charge is moved from infinity to its final position (a,0) is:

A.
$$+k\frac{3q^2}{a} + k\frac{q^2}{b}$$

B. $-k\frac{3q^2}{a} + k\frac{q^2}{b}$ (4)
C. $+k\frac{3q^2}{a} - k\frac{q^2}{b}$ (4)
D. $-k\frac{3q^2}{a} - k\frac{q^2}{b}$ (4)
E. $+k\frac{3q^2}{a} + k\frac{q^2}{\sqrt{a^2+b^2}}$ (4)
F. $-k\frac{3q^2}{a} + k\frac{q^2}{\sqrt{a^2+b^2}}$ (8)
G. $+k\frac{3q^2}{a} - k\frac{q^2}{\sqrt{a^2+b^2}}$ (2)
H. $-k\frac{3q^2}{a} - k\frac{q^2}{\sqrt{a^2+b^2}}$ (4)



Scratch Paper