Physics 207 - Exam 1

Sections (207-212, 543-583) - September 23 ${ }^{\text {rd }}, 2021$

Right answer indicated by \leftarrow. Number of points indicated in parenthesis, zero otherwise

1) [7 pts] Point P is at 3equal distance from two fixed point charges $+q$ and q as shown. If a negative point charge is placed on P, which dashed arrow on the figure shows the direction of the net electrical force felt by the charge at P due to the fixed charges?
A. A (2)
E. $E(2)$
B. B
F. F
C. C (4)
G. G (7)
D. D
H. H

2) [8 pts] In the previous problem, if the charge at point P is $-q$, the magnitude of the force felt by that charge is :
A. $\frac{2 k q^{2} L}{\left(2 L^{2}\right)^{3 / 2}}$ (8)
B. $\frac{k q^{2} L}{\left(2 L^{2}\right)^{3 / 2}}$
C. $\frac{2 k q^{2} L}{\left(L^{2}\right)^{3 / 2}}$
D. $\frac{2 k q^{2} L^{2}}{\left(2 L^{2}\right)^{3}}$
E. $\frac{k q^{2} L}{\left(2 L^{2}\right)^{3}}$
F. $\frac{2 k q^{2} L}{\left(L^{2}\right)^{3}}$
3) [8 pts] A negative point charge $-q$ is at the coordinate origin, at some distance from an infinitely long plate with uniform charge σ per unit area as shown in the picture. The electric field a distance x from the point charge as shown in the figure is:
A. $\left(\frac{\sigma}{2 \varepsilon_{0}}-k \frac{q}{x^{2}}\right) \hat{x}(8) \leftarrow$
B. $\left(\frac{\sigma}{2 \varepsilon_{0}}+k \frac{q}{x^{2}}\right) \hat{x}$ (4)
C. $\left(-\frac{\sigma}{2 \varepsilon_{0}}-k \frac{q}{x^{2}}\right) \hat{x}(5)$
D. $\left(-\frac{\sigma}{2 \varepsilon_{0}}+k \frac{q}{x^{2}}\right) \hat{x}(2)$
E. $\left(\frac{\sigma}{2 \varepsilon_{0}}-k \frac{q}{x}\right) \hat{x}$
F. $\left(\frac{\sigma}{2 \varepsilon_{0}}+k \frac{q}{x}\right) \hat{x}$
G. $\left(-\frac{\sigma}{2 \varepsilon_{0}}-k \frac{q}{x}\right) \hat{x}$
H. $\left(-\frac{\sigma}{2 \varepsilon_{0}}+k \frac{q}{x}\right) \hat{x}$
4) [8 pts] a cube of side L is tilted 30 degrees with respect to a homogenous external electric field of magnitude E. The flux through the faces 1 and 2 indicated in the picture are (face 1 , face 2):
A. $E L^{2} \cos (30),-E L^{2} \sin (30)(8) \leftarrow$
B. $E L^{2} \cos (30),-E L^{2} \cos (30)(4)$
C. $E L^{2} \sin (30),-E L^{2} \sin (30)$ (4)
D. $E L^{2} \sin (30),-E L^{2} \cos (30)$
E. $-E L^{2} \cos (30), E L^{2} \sin (30)$ (2)
F. $-E L^{2} \cos (30), E L^{2} \cos (30)$ (2)
G. $-E L^{2} \sin (30), E L^{2} \sin (30)$ (2)
H. $-E L^{2} \sin (30), E L^{2} \cos (30)$
5) [7 pts] Three Gaussian surfaces S_{1}, S_{2}, S_{3} are enclosing charges as shown. The flux enclosed by each corresponding surface can be ordered from the most positive to the most negative as:
A. $\Phi_{1}>\Phi_{2}>\Phi_{3}$ (4)
B. $\Phi_{1}>\Phi_{3}>\Phi_{2}$ (7)
(7) \leftarrow
C. $\Phi_{2}>\Phi_{3}>\Phi_{1}$
D. $\Phi_{2}>\Phi_{1}>\Phi_{3} \quad(4)$
E. $\Phi_{3}>\Phi_{1}>\Phi_{2} \quad$ (4)
F. $\Phi_{3}>\Phi_{2}>\Phi_{1}$

6) [7 pts] A closed hollow conductor with net charge $4 q$ encloses inside a point-like charge $-q$, and an insulator with charge $2 q$ as shown in the figure. Find the total charge distributed in the outer surface of the conductor:
A. $-2 q$
B. $-1 q$
C. $0 q$
D. 1 q
E. 2 q
F. 3 q

G. $4 \mathrm{q}(2)$
H. 5 q (7)
7) [8 pts] Two thin concentric spherical shells have radii R_{1} and R_{2} with $R_{1}<R_{2}$. A total charge of $-2 Q$ is uniformly spread in the inner shell and a total charge of Q is spread on the outer shell. The electric field in the region between the two shells, at $R 1<r<R 2$, is
A. pointing outward with magnitude $k Q / r^{2}$
B. pointing inward with magnitude $\mathrm{kQ} / \mathrm{r}^{2}$
C. pointing outward with magnitude $k 2 Q / r^{2}$
(6)
D. pointing inward with magnitude $k 2 Q / r^{2}$
E. pointing outward with magnitude $k Q / r$
F. pointing inward with magnitude $k Q / r$
G. pointing outward with magnitude $k 2 Q / r$
H. pointing inward with magnitude $k 2 \mathrm{Q} / \mathrm{r}$
8) [8 pts] A long string with charge density per unit length λ, is at the center of long hollow cylindrical conductor with no net charge, internal radius of R_{i} and external radius R_{o} as shown in the figure. The charge per unit area σ induced in the inner surface of the conductor is:
A. $\sigma=\frac{+\lambda}{2 \pi R_{i}} \quad$ (5)
B. $\sigma=\frac{-\lambda}{2 \pi R_{i}}$
(8)
C. $\sigma=\frac{+\lambda}{\pi R_{i}}$
D. $\sigma=\frac{-\lambda}{\pi R_{i}}$
E. $\sigma=\frac{+\lambda}{2 \pi R_{i}^{2}}$
F. $\sigma=\frac{-\lambda}{2 \pi R_{i}^{2}}$
G. $\sigma=\frac{+\lambda}{\pi R_{i}^{2}}$
H. $\sigma=\frac{-\lambda}{\pi\left(R_{0}^{2}-R_{i}^{2}\right)}$

9) [8 pts] In a region of space there is a constant electric field of magnitude E_{0} in the Y direction, superimposed with the electric field of a point charge $-q$ at the origin. Compute the difference in electric potential at points B and $A, V_{B}-V_{A}$, as located in the figure.
A. $+E_{0} a+k q \frac{(a-b)}{a b}$
(3)
B. $+E_{0} a-k q \frac{(a-b)}{a b}$
C. $-E_{0} a+k q \frac{(a-b)}{a b}$
(4)
D. $-E_{0} a-k q \frac{(a-b)}{a b}$
(8) \leftarrow
E. $+E_{0} b+k q \frac{(a-b)}{a b}$
F. $+E_{0} b-k q \frac{(a-b)}{a b}$
(4)
G. $-E_{0} b+k q \frac{(a+b)}{a b}$

H. $-E_{0} b-k q \frac{(a+b)}{a b}$
10) [8 pts] At locations A and B , the electric potential has the values $V_{\mathrm{A}}=20 \mathrm{~V}$ and $V_{\mathrm{B}}=-10 \mathrm{~V}$. A small particle with charge $\mathrm{q}=-2 \mu \mathrm{C}$ is released from rest at one of the locations and passes through the other location with kinetic energy K. Which of the following statement is true?
A. The other location is A with $K=20 \mu \mathrm{~J}$
B. The other location is A with $K=40 \mu \mathrm{~J}$
C. The other location is A with $K=60 \mu \mathrm{~J}$
D. The other location is A with $K=80 \mu \mathrm{~J}$
E. The other location is B with $K=20 \mu \mathrm{~J}$
F. The other location is B with $K=40 \mu \mathrm{~J}$
G. The other location is B with $K=60 \mu \mathrm{~J}$
H. The other location is B with $K=80 \mu \mathrm{~J}$
11) [7 pts] Two equal but opposite charged plates with uniformly distributed charges are as shown. Which of the following statement is incorrect ? [6 pts]
A. Position A is at a higher potential than position B
B. Position A is at a higher potential than position D
C. Position C is at a higher potential than position $\mathrm{A}(7) \leftarrow$
D. Position C is at a higher potential than position B
E. Position C is at a higher potential than position D

12) [8 pts] A short line of length \mathbf{h} is centered at the origin, aligned with the y-axis and has a non-uniform linear charge density $\lambda(y)=\alpha y^{2}$, where α is a known constant. The electric field produced by the charged line at the point $(L, 0)$ is given by :
A. $E_{x}(L, 0)=\int_{-h / 2}^{h / 2} \frac{k \alpha y^{2} L d y}{\left(L^{2}+y^{2}\right)^{3 / 2}}$
(8)
B. $E_{x}(L, 0)=\int_{-h / 2}^{h / 2} \frac{k \alpha y^{3} d y}{\left(L^{2}+y^{2}\right)^{3 / 2}}$
C. $E_{x}(L, 0)=\int_{-h / 2}^{h / 2} \frac{k \alpha y^{2} d y}{\left(L^{2}+y^{2}\right)}$
D. $E_{x}(L, 0)=\int_{-h / 2}^{h / 2} \frac{k \alpha y^{2} L d y}{\left(L^{2}+y^{2}\right)^{3}}$
E. $E_{x}(L, 0)=\int_{-h / 2}^{h / 2} \frac{k \alpha y^{3} L^{2} d y}{\left(L^{2}+y^{2}\right)^{3}}$
F. $\quad E_{x}(L, 0)=\int_{-h / 2}^{h / 2} \frac{k \alpha L^{2} d y}{\left(L^{2}+y^{2}\right)^{3}}$

13) [8 pts] A charge of value $3 q$ is fixed at the origin, and a charge $-q$ is fixed at position ($0, b$). A third charge of value \mathbf{q} is then moved from infinity to position $(a, 0)$ as shown in the figure. Assuming the potential of the third charge at infinity is zero, the work done by the electric force as the third charge is moved from infinity to its final position ($\mathrm{a}, 0$) is:
A. $+k \frac{3 q^{2}}{a}+k \frac{q^{2}}{b}$
B. $-k \frac{3 q^{2}}{a}+k \frac{q^{2}}{b}(4)$
C. $+k \frac{3 q^{2}}{a}-k \frac{q^{2}}{b}$
D. $-k \frac{3 q^{2}}{a}-k \frac{q^{2}}{b}$ (4)
E. $+k \frac{3 q^{2}}{a}+k \frac{q^{2}}{\sqrt[2]{a^{2}+b^{2}}}$

F. $-k \frac{3 q^{2}}{a}+k \frac{q^{2}}{\sqrt[2]{a^{2}+b^{2}}}$ (8)
G. $+k \frac{3 q^{2}}{a}-k \frac{q^{2}}{\sqrt[2]{a^{2}+b^{2}}}$ (2)
H. $-k \frac{3 q^{2}}{a}-k \frac{q^{2}}{\sqrt[2]{a^{2}+b^{2}}}$ (4)

Scratch Paper

