Physics 207 – Exam 1

Sections (519-524; 525-530) – February 16, 2022

1) [8 pts] A negative charge of -0.51 μ C exerts an upward 0.70 N force on an unknown charge that is located 3 cm directly above the first charge. The sign and magnitude of the unknown charge is

A) positive, $1370 \ \mu C$ B) positive, $137.0 \ \mu C$ C) positive, $13.7 \ \mu C$ [4] D) positive, $1.37 \ \mu C$ E) negative, $1370 \ \mu C$ [4] F) negative, $137.0 \ \mu C$ [2] G) negative, $13.7 \ \mu C$ [8]

2) [8 pts] Two small beads having positive charges 3q (placed at x=0) and q (placed at x=d) are fixed at the opposite ends of a horizontal insulating rod extending from the origin to the point x=d. A third small charged bead is free to slide on the rod as shown in the Figure. At what position is the third bead in equilibrium?

3) [8 pts] Two point-charges are located on the y-axis; charge +q at y = a and charge -q at the y = -a. Calculate the electric field vector on the position P as shown.

4) [8 pts] A uniform line of charge is formed into a semicircle of radius *R* shown in Figure. The charge per unit length is -λ. The electric field vector at the origin is

A)
$$\vec{E} = \frac{k\lambda}{R} \hat{i}$$
 [2]
B) $\vec{E} = \frac{2k\lambda}{R} \hat{i}$ [8]
C) $\vec{E} = -\frac{k\lambda}{R} \hat{i}$ [8]
D) $\vec{E} = -\frac{2k\lambda}{R} \hat{i}$ [6]
E) $\vec{E} = \frac{k\lambda}{R} (\hat{i} + \hat{j})$
F) $\vec{E} = -\frac{k\lambda}{R} (\hat{i} + \hat{j})$

+q

5) [8 pts] A solid, insulating sphere of radius a has a uniform charge density ρ and a total charge Q. Concentric with this sphere is an uncharged, conducting hollow sphere whose inner and outer radii are b and c, as shown in the Figure. Determine the induced charge per unit area on the inner and outer surfaces of the hollow sphere.

A)
$$\sigma_b = \frac{-Q}{4\pi b^2}$$
 $\sigma_c = \frac{Q}{4\pi c^2}$ [8]
B) $\sigma_b = \frac{-Q}{4\pi b^2}$ $\sigma_c = 0$ [4]
C) $\sigma_b = \frac{Q}{4\pi b^2}$ $\sigma_c = \frac{-Q}{4\pi c^2}$ [6]
D) $\sigma_b = 0$ $\sigma_c = 0$
E) $\sigma_b = 0$ $\sigma_c = \frac{Q}{4\pi c^2}$ [4]
F) $\sigma_b = 0$ $\sigma_c = \frac{-Q}{4\pi c^2}$
G) $\sigma_b = -Q$ $\sigma_c = Q$

6) [7 pts] Consider a closed surface that consists of a disc and a parabolic surface. Calculate the total electric flux through only the paraboloidal surface due to a constant electric field of magnitude E_0 in the direction shown in the Figure.

7) [7 pts] Charges q_1 = Q, q_2 =3Q and q_3 =-3Q are enclosed by surface S_1 , S_2 , S_3 , S_4 and S_5 . Which two surfaces enclose the same amount of flux?

- A) S_1 and S_2
- B) S_2 and S_3
- C) S_3 and S_4
- D) S_4 and S_5
- E) S_5 and S_1 [7]
- F) S_1 and S_3
- G) S_3 and S_5

8) [8 pts] Two concentric spherical surfaces have radii R_1 and R_2 with $R_1 < R_2$. A total charge of -2Q is uniformly spread on the inner surface and a total charge of 3Q is spread on the outer surface. The electric field vector in the region between the two surfaces, at $R_1 < r < R_2$, is

9) [8 pts] The work (per unit charge) done by the electric field from A=(0,0) to B=(a,b) inside of two uniformly charged planes with surface charge densities σ and $-\sigma$ as shown is

10) [8 pts] A point particle of mass *m* charge q_2 is moving horizontally toward another charged particle with charge q_1 fixed in place. When q_2 is at distance of 0.8 m from q_1 it is moving with velocity v=22.0 m/s. If it is known that m/(kq_1q_2)=7.63x10⁻³ in MKS units, the closest distance that q_2 can approach q_1 is

11) [8 pts] Two point-charges, 2q and -q are placed on the y-axis as shown, the line integral of their combined electric field along any path from A to B is

12) [7 pts] Two semicircular arcs of radius *a* and *2a* are uniformly charged with total charge of *-Q* and *Q* respectively as shown. The electric potential due to these two charge arcs at the origin is

13) [7 pts] Positive charge Q is uniformly distributed along the x-axis from x=0 to x=a as shown. A positive point charge q is located on the positive x-axis at x=a+r. The potential energy of this charge configuration is

