Physics 207 - Exam 1

Sections (519-524; 525-530) - February 16, 2022

1) [8 pts] A negative charge of $-0.51 \mu \mathrm{C}$ exerts an upward 0.70 N force on an unknown charge that is located 3 cm directly above the first charge. The sign and magnitude of the unknown charge is
A) positive, $1370 \mu \mathrm{C}$
B) positive, $137.0 \mu \mathrm{C}$
C) positive, $13.7 \mu \mathrm{C} \quad$ [4]
D) positive, $1.37 \mu \mathrm{C}$
E) negative, $1370 \mu \mathrm{C}$ [4]
F) negative, $137.0 \mu \mathrm{C}$ [2]
G) negative, $13.7 \mu \mathrm{C}$
[8]
2) [8 pts] Two small beads having positive charges $3 \boldsymbol{q}$ (placed at $x=0$) and \boldsymbol{q} (placed at $x=d$) are fixed at the opposite ends of a horizontal insulating rod extending from the origin to the point $\mathrm{x}=\mathrm{d}$. A third small charged bead is free to slide on the rod as shown in the Figure. At what position is the third bead in equilibrium?
A) $x=\frac{d}{\sqrt{3}+1}$
[4]
B) $x=\frac{d}{\sqrt{3}}$
C) $x=\frac{\sqrt{3} d}{\sqrt{3}+1}$
D) $x=\frac{2 d}{\sqrt{3}+1}$
[4]
E) $x=\frac{d}{2}$
F) $x=\frac{3 d}{4}$
G) $x=\frac{d}{3}$

3) [8 pts] Two point-charges are located on the y-axis; charge $+\boldsymbol{q}$ at $y=a$ and charge $-\boldsymbol{q}$ at the $\mathrm{y}=-a$. Calculate the electric field vector on the position P as shown.
A) $\vec{E}=\frac{k q}{\sqrt{2} a^{2}}(\hat{\mathbf{1}}+\hat{\mathbf{j}})$ [2]
B) $\vec{E}=-\frac{k q}{\sqrt{2} a^{2}} \hat{\mathbf{J}} \quad$ [8]
C) $\vec{E}=\frac{k q}{\sqrt{2} a^{2}} \hat{\mathbf{j}}$
[6]
D) $\vec{E}=\frac{k q}{a^{2}}(\hat{\mathbf{1}}+\hat{\mathbf{j}})$
E) $\vec{E}=\frac{k q}{\sqrt{2} a^{2}} \hat{\mathbf{i}}$
F) $\vec{E}=\frac{k q}{a^{2}} \hat{\mathbf{\imath}}$

4) [8 pts] A uniform line of charge is formed into a semicircle of radius \boldsymbol{R} shown in Figure. The charge per unit length is $-\lambda$. The electric field vector at the origin is
A) $\vec{E}=\frac{k \lambda}{R} \hat{\mathbf{\imath}} \quad$ [2]
B) $\vec{E}=\frac{2 k \lambda}{R} \hat{\boldsymbol{i}}$
[8]
C) $\vec{E}=-\frac{k \lambda}{R} \hat{\boldsymbol{\imath}}$
D) $\vec{E}=-\frac{2 k \lambda}{R} \hat{\boldsymbol{\imath}}$
E) $\vec{E}=\frac{k \lambda}{R}(\hat{\mathbf{\imath}}+\hat{\boldsymbol{\jmath}})$
F) $\vec{E}=-\frac{k \lambda}{R}(\hat{\mathbf{\imath}}+\hat{\boldsymbol{\jmath}})$

5) [8 pts] A solid, insulating sphere of radius \boldsymbol{a} has a uniform charge density $\boldsymbol{\rho}$ and a total charge \boldsymbol{Q}. Concentric with this sphere is an uncharged, conducting hollow sphere whose inner and outer radii are \boldsymbol{b} and \boldsymbol{c}, as shown in the Figure. Determine the induced charge per unit area on the inner and outer surfaces of the hollow sphere.
A) $\sigma_{b}=\frac{-Q}{4 \pi b^{2}} \quad \sigma_{c}=\frac{Q}{4 \pi c^{2}}$
B) $\sigma_{b}=\frac{-Q}{4 \pi b^{2}} \quad \sigma_{c}=0$
C) $\sigma_{b}=\frac{Q}{4 \pi b^{2}} \quad \sigma_{c}=\frac{-Q}{4 \pi c^{2}}$
D) $\sigma_{b}=0 \quad \sigma_{c}=0$
E) $\sigma_{b}=0 \quad \sigma_{c}=\frac{Q}{4 \pi c^{2}}$
F) $\sigma_{b}=0 \quad \sigma_{c}=\frac{-Q}{4 \pi c^{2}}$
G) $\sigma_{b}=-Q \quad \sigma_{c}=Q$

6) [7 pts] Consider a closed surface that consists of a disc and a parabolic surface. Calculate the total electric flux through only the paraboloidal surface due to a constant electric field of magnitude E_{0} in the direction shown in the Figure.
A) 0
[2]
B) $\pi r^{2} E_{0}$ [7]
C) $-\pi r^{2} E_{0}$ [4]
D) $\pi r d E_{0}$
E) $-\pi r d E_{0}$
F) $E_{0} r d / \varepsilon_{0}$
G) $-E_{0} r d / \varepsilon_{0}$

7) [7 pts] Charges $q_{1}=Q, q_{2}=3 Q$ and $q_{3}=-3 Q$ are enclosed by surface $S_{1}, S_{2}, S_{3}, S_{4}$ and S_{5}. Which two surfaces enclose the same amount of flux?
A) S_{1} and S_{2}
B) S_{2} and S_{3}
C) S_{3} and S_{4}
D) S_{4} and S_{5}
E) S_{5} and S_{1}
F) S_{1} and S_{3}
G) S_{3} and S_{5}

8) [8 pts] Two concentric spherical surfaces have radii R_{1} and R_{2} with $R_{1}<R_{2}$. A total charge of -2Q is uniformly spread on the inner surface and a total charge of 3 Q is spread on the outer surface. The electric field vector in the region between the two surfaces, at $R 1<r<R 2$, is
A. $\frac{k Q}{r^{2}} \hat{\boldsymbol{r}}$
B. $-\frac{k Q}{r^{2}} \hat{\boldsymbol{r}}$
C. $\frac{k 2 Q}{r^{2}} \hat{\boldsymbol{r}}$
D. $-\frac{k 2 Q}{r^{2}} \hat{\boldsymbol{r}}$
E. $\frac{k 3 Q}{r^{2}} \hat{\boldsymbol{r}}$
F. $-\frac{k 3 Q}{r^{2}} \hat{\boldsymbol{r}}$

G. $-\frac{k 2 Q}{r} \hat{\boldsymbol{r}}$
9) [8 pts] The work (per unit charge) done by the electric field from $A=(0,0)$ to $B=(a, b)$ inside of two uniformly charged planes with surface charge densities σ and $-\sigma$ as shown is
A) $\frac{\sigma}{2 \varepsilon_{0}} a$
B) $-\frac{\sigma}{2 \varepsilon_{0}} a$
[2]
C) $\frac{\sigma}{\varepsilon_{0}} a$
[8]
D) $-\frac{\sigma}{\varepsilon_{0}} a$
[4]
E) $\frac{\sigma}{\varepsilon_{0}} \sqrt{a^{2}+b^{2}}$
F) $-\frac{\sigma}{\varepsilon_{0}} \sqrt{a^{2}+b^{2}}$

G) 0
10) [8 pts] A point particle of mass m charge q_{2} is moving horizontally toward another charged particle with charge q_{1} fixed in place. When q_{2} is at distance of 0.8 m from q_{1} it is moving with velocity $\mathrm{v}=22.0$ m / s. If it is known that $\mathrm{m} /\left(\mathrm{kq}_{1} \mathrm{q}_{2}\right)=7.63 \times 10^{-3}$ in MKS units, the closest distance that q_{2} can approach q_{1} is
A) 1.677 m
[2]
B) 1.256 m
C) 0.982 m
D) 0.542 m
E) 0.637 m
F) 0.323 m
[8]

11) [8 pts] Two point-charges, $2 q$ and $-q$ are placed on the y-axis as shown, the line integral of their combined electric field along any path from A to B is
A. $k \frac{q}{a}-k \frac{2 q}{b}$
B. $k \frac{q}{a}-k \frac{q}{b}+k \frac{q}{\sqrt{b^{2}+a^{2}}}$
C. $k \frac{q}{a}-k \frac{q}{b}+k \frac{q}{\sqrt{b^{2}+a^{2}}}$
D. $k \frac{q}{a}-k \frac{2 q}{b}+k \frac{q}{\sqrt{b^{2}+a^{2}}}$
[2]
E. $-k \frac{q}{a}+k \frac{2 q}{b}-k \frac{q}{\sqrt{b^{2}+4 a^{2}}}$
F. $\quad k \frac{q}{a}-k \frac{2 q}{b}+k \frac{q}{\sqrt{b^{2}+4 a^{2}}}$
G. $k \frac{q}{a}+k \frac{2 q}{b}+k \frac{q}{\sqrt{b^{2}+4 a^{2}}}$

12) [7 pts] Two semicircular arcs of radius a and $2 a$ are uniformly charged with total charge of $-Q$ and Q respectively as shown. The electric potential due to these two charge arcs at the origin is
A. $k \frac{Q}{a}$
B. $-k \frac{Q}{a}$
[2]
C. $k \frac{Q}{2 a}$
D. $-k \frac{Q}{2 a}$ [7]
E. $k \frac{3 Q}{2 a}$
F. $-k \frac{3 Q}{2 a}$
G. 0

13) [7 pts] Positive charge Q is uniformly distributed along the x-axis from $x=0$ to $x=a$ as shown. A positive point charge q is located on the positive x-axis at $x=a+r$. The potential energy of this charge configuration is
A. $\frac{k Q q}{a}$
B. $\frac{k Q q}{a+r}$
C. $\frac{k Q q}{a-r}$
D. $\frac{k Q q}{a}\left(\frac{1}{r}-\frac{1}{a+r}\right)$
[2]
E. $\frac{k Q q}{a}\left(\frac{1}{a+r}-\frac{1}{r}\right)$
F. $\frac{k Q q}{a} \ln \left(\frac{r+a}{r}\right)$

G. $\frac{k Q q}{a} \ln \left(\frac{r}{r+a}\right)$
[3]
