1.

2.
$$I = \frac{1}{2} \varepsilon_0 c E_{max}^2$$
; $E = 175 N/C$

3.
$$\alpha = \frac{\varepsilon_0 a^2 A^2}{2mL}$$

4.

a.
$$I = \frac{P}{A} = 637 W/m^2$$

b.
$$E = \sqrt{\frac{2I}{\varepsilon_0 c}} = 693 \, V/m$$
 $B = \frac{E}{c} = 2.31 \, \mu T$

c.
$$u_{av} = \frac{I}{c} = 2.12 \times 10^{-6} J/m^3$$

5.

a.
$$F_g = \frac{4\rho G\pi MR^3}{3r^2}$$

- b. $F_{rad} = \frac{LR^2}{4cr^2}$ Light only radiates on one face of the particle
- c. $R=rac{3L}{16c
 ho G\pi M}=0.19~\mu m$. Both F_g and F_{rad} are dependent on r^{-2}

which cancels in the final expression. It does not depend on the distance from the sun.

d. If $R > .19 \, \mu m$ the particle would be driven out of the solar system