Chapter 30 - Inductance

Physics 207

1a. $I(t)=\frac{\mathcal{E}}{R} e^{-t R / L}$
1b. $I(t)=\frac{\mathcal{E}}{R}\left(1-e^{-t_{1} R / L}\right) e^{-\left(t_{2}-t_{1}\right) R / L}$

2a. $i_{1}=\frac{\mathcal{E}}{R_{1}}$
$i_{2}=0$
$i_{3}=\frac{\mathcal{E}}{R_{1}}$
2b. $i_{1}=\frac{\mathcal{E}}{R_{1}+R_{2}}$

$$
\begin{aligned}
i_{2} & =\frac{\mathcal{E}}{R_{1}+R_{2}} \\
i_{3} & =0
\end{aligned}
$$

2c. $i_{3}=\frac{\mathcal{E}}{R_{1}}\left(1-e^{\frac{-R_{1} R_{2} t}{L\left(R_{1}+R_{2}\right)}}\right)$

3a. $i_{0}=0$

$$
\begin{aligned}
v_{a c} & =0 \\
v_{c b} & =\mathcal{E}
\end{aligned}
$$

3b. $i_{0}=\frac{\mathcal{E}}{R_{0}+R}$

$$
\begin{aligned}
v_{a c} & =\frac{\mathcal{E} R_{0}}{R_{0}+R} \\
v_{c b} & =\frac{\mathcal{E} R}{R_{0}+R}
\end{aligned}
$$

3c. $i_{0}(t)=\frac{\mathcal{E}}{R+R_{0}}\left(1-e^{-\left(R+R_{0}\right) t / L}\right)$
$v_{a c}(t)=\frac{\mathcal{E} R 0}{R+R_{0}}\left(1-e^{-\left(R+R_{0}\right) t / L}\right)$
$v_{c b}(t)=\frac{\mathcal{E} R}{R+R_{0}}\left(1-e^{-\left(R+R_{0}\right) t / L}\right)$
4. $0=B \pi a^{2} \omega \sin (\omega t)-\frac{q}{C}-\frac{d q}{d t} R$

5a. $K_{m}=1.25$

$$
\chi_{m}=0.25
$$

$$
5 \text { b. } B_{f}=1.25 B_{0}
$$

$$
5 \text { c. } u_{f}=1.25 u_{0}
$$

6a. At $t=0$: Resistor $I=24.0 \mathrm{~mA}$ 30 mH Inductor $I=0$ 50 mH Inductor $I=0$
At $t \rightarrow \infty$: Resistor $I=0 \mathrm{~mA}$
30 mH Inductor $I=20.0 \mathrm{~mA}$
50 mH Inductor $I=0$
6 b . At $t=0$: Resistor $I=24.0 \mathrm{~mA}$
30 mH Inductor $I=0$
50 mH Inductor $I=0$
At $t \rightarrow \infty$: Resistor $I=0 \mathrm{~mA}$
30 mH Inductor $I=0$
50 mH Inductor $I=0$

