Chapter 22 - Gauss's Law

Physics 207
1a. Opposite corners of a rectangle are at positions $(x, y, z)=(2,3,1)$ and $(x, y, z)=(5,3,6)$. There is an electric field $\vec{E}=\left(3 x^{2}+4\right) \hat{y}$. What is the electric flux through this rectangle due to this electric field?
1 b . Find the electric flux through a thin disc of radius R, due to a point charge q. Let the point charge be a distance x_{0} from the center of the disc and along its axis.
2. A very long, insulating cylinder with radius a and the formula for charge density as a function of radius given below. This cylinder is placed inside a long, conducting, cylindrical shell which has an inner radius b and a thickness t.

$$
\rho(r)=\frac{\rho_{0} r^{3}}{a^{3}}
$$

a) Find the electric field for $r<a$.
b) Find the electric field for $a<r<b$.
c) Find the electric field for $b<r<b+t$.
d) Find the electric field for $b+t<r$.
e) Plot $E(r)$.
f) Suppose the inner cylinder is known to have a total linear charge density, λ. Find the constant, ρ_{0}, in terms of λ and the radius of the cylinder.

3. An insulating sphere of uniform charge $+Q$ and a radius a is placed inside an insulating shell of uniform charge $-Q$ with inner radius B and outer radius C.
a) Find the electric field for $r<a$.
b) Find the electric field for $a<r<B$.
c) Find the electric field for $B<r<C$.
d) Find the electric field for $C<r$.
e) Plot the electric field lines in all regions and $E(r)$.

4. An insulating hollow sphere has an inner radius a and an outer radius b. Within the insulating material, the volume charge density is given below where γ is a positive constant.

$$
\rho(r)=\frac{\gamma}{r}
$$

a) Find the electric field for $r<a$.
b) Find the electric field for $a<r<b$.
c) Find the electric field for $b<r$.
d) Plot $E(r)$
e) A point charge q is placed at the exact center of the hollow space. In terms of γ and a, what value must q have (sign and magnitude) in order for the electric field to be constant in the region $a<r<b$? What is the value of the electric field if this is the case?
f) Suppose the hollow sphere is known to have a total charge Q. Find γ in terms of Q, a and b.

