Chapter 21 - Electric Charge and Electric Field - Part 2

Physics 207

1. A charge of magnitude $-2 q$ is fixed at the origin. A second charge, $-q$, is fixed at a distance d away from the origin on the positive x-axis. Find any positions on the x-axis where the electric field is exactly zero.

2. Two charges are placed in the configuration below at the origin and $(a, 0)$ respectively. Find the electric field vector at the point $(2 a, a)$.

3. A $-170 \mu \mathrm{C}$ charge is located at $(-2.00,0.00)$ and a $100 \mu \mathrm{C}$ charge is located at $(0.00,-5.00)$. There is a uniform, external electric field $\vec{E}=30000 \hat{\imath}$ (in SI units). All positions are given in units of m.
a) What is the net electric force vector acting on the $-170 \mu \mathrm{C}$ charge?
b) What is the magnitude and direction of the net electric force acting on the $100 \mu \mathrm{C}$ charge?
c) What is the net electric field vector at the point $(0.00,3.00)$?
4. A thin rod with uniform charge $+Q$ is placed with one end at $(0, b)$ and the other end at $(0,-b)$.
a) Set up the two, well-defined integrals that you would solve to find the components of the electric field at the point (a, b). Do not actually evaluate the integrals, just set them up.
b) If a point charge $+2 q$ is then placed at (a, b), modify the integrals you found in part (a) to find the force vector felt by the rod due to the $+2 q$ charge.

5. Consider a thin, hollow tube of length ℓ, radius R and total charge Q that is uniformly distributed along the surface. The tube is oriented so that the central axis is along the z-axis. The tube runs from $0 \leq z \leq \ell$. Set up the well-defined integral that you would solve to find the electric field at the coordinate ($0,0, z_{0}$). Make sure that your result will make sense if $z_{0}<0$, $0<z_{0}<\ell$ or $z>\ell$.
6. An insulating ring of charge with radius a has a charge density $\lambda(\theta)=\lambda_{0} \sin \theta$ where θ is measured counterclockwise from the positive x-axis. What is the electric field vector at the origin?

7. Consider a system of identical point charges q that are evenly spaced by a distance d starting at the origin and continuing infinitely along the negative x-axis. The point P is the same distance d to the right of the origin. Does the electric field at the position P converge to a specific value? If so, what is that value?

