Multiple choice questions:

Question	Exam A	Exam B
MC1	E	E
MC2	F	B
MC3	D	E
MC4	D	E

1. (20 marks) A doubly-charged helium atom, whose mass is $6.6 \times 10^{-27} \mathrm{~kg}$, is accelerated by a voltage of 3.4 kV .

6 a) What is its resultant velocity?
8 b) What will be its radius of curvature, if it moves in a plane perpendicular to a uniform $0.570-\mathrm{T}$ field after exiting the electric field region?
6 c) What is its period of revolution?
a) $q V=1 / 2 m v^{2} \Rightarrow V=\sqrt{\frac{2 q V}{m}}=\sqrt{\frac{2(2 e) V}{m}}$

$$
=\left[\frac{2 \times 2 \times 1.60 \times 10^{-19} \mathrm{C} \times 3.4 \times 10^{3} \mathrm{~V}}{6.6 \times 10^{-27} \mathrm{~kg}}\right]^{1 / 2}
$$

$$
V: 5.7 \times 10^{5} \mathrm{~m} / \mathrm{s}
$$

b) $B q v=\frac{m v^{2}}{\pi} \Rightarrow \pi=\frac{m v}{B q}=\frac{m v}{B(2 e)}=$
c) $T=\frac{2 \pi \pi}{v}=\frac{2 \pi \times 0.021 \mathrm{~m}}{5.7 \times 10^{5} \mathrm{~m} / \mathrm{s}}=0.23 \mu \mathrm{~s}$

$$
\text { Buersion a) } V=\left[\frac{2 \times 2 \times 1.60 \times 10^{-19} \mathrm{C} \times 2.8 \times 10^{3} \mathrm{~V}}{6.6 \times 10^{-27} \mathrm{~kg}}\right]^{1 / 2}=5.2 \times 10^{5} \mathrm{~m} / \mathrm{s}
$$

b) $\pi=\frac{6.6 \times 10^{-27 / 2 g} \times 5.2 \times 10^{5} \mathrm{~m} / \mathrm{s}}{0.370 \mathrm{~T} \times 2 \times 1.60 \times 10^{-19} \mathrm{C}}=0.029 \mathrm{~m} \Rightarrow 2.9 \mathrm{~cm}$
c) $T=\frac{2 \pi \times 0.029 \mathrm{~m}}{5.2 \times 10^{5} \mathrm{~m} / \mathrm{s}}=0.35 \mu \mathrm{~s}$
2. (20 marks) A segment of wire of length ℓ carries a current I as shown in the figure.

5 a) What is the expression (or value) for the magnetic field [magnitude and direction] at any point such as Q along the positive x axis (the axis of the wire)?
15 b) What is the expression (or value) for the magnetic field [magnitude and direction] at any point such as P along the positive y axis?

$$
d \vec{B}=\frac{\mu_{0} I}{4 \pi} \frac{d \vec{l} \times \hat{\Omega}}{\Omega^{2}}
$$

a) For all points on the x axis

$$
\begin{aligned}
& \dot{d l} \times \hat{\Omega}=\hat{0} \\
& \cdot \vec{B}=0
\end{aligned}
$$

b) On the y axis

$$
d \vec{B}=\frac{-\mu_{0} I}{4 \pi} \frac{d x \operatorname{sen} \theta \hat{k}}{x^{2}+y^{2}}
$$

but $\operatorname{sen} \theta=\frac{y}{\sqrt{x^{2}+y^{2}}}$
Berrsion:
a) On the x axis

$$
\therefore d \vec{B}=-\frac{\mu_{0} I y}{i \pi \pi} \frac{d x}{\left(x^{2}+y^{2}\right) / 3 / 2} \hat{k}
$$

$$
\begin{aligned}
d \vec{B} & =\frac{\mu_{0} I}{4 \pi} I \frac{d y \operatorname{sen} \theta \hat{k}}{x^{2}+y^{2}} \\
& =\mu_{0} \frac{\mu_{0}}{4 \pi} \frac{x d y}{\left(x^{2}+y^{2}\right)^{3 / 2}} \hat{k} \\
\vec{B} & =\int_{0}^{l} d \vec{B} \\
& =\frac{\mu_{0} I x}{4 \pi} \int_{0}^{l} \frac{d y}{\left(x^{2}+y^{2}\right)^{3 / 2}} \hat{k} \\
& =\frac{\mu_{0} I x}{4 \pi}\left[\frac{y}{x^{2} \sqrt{x^{2}+y^{2}}}\right]_{0}^{l}
\end{aligned}
$$

$$
\therefore \vec{B}=\int_{0}^{l} d \vec{B}=-\frac{\mu_{0} I y}{4 \pi} \int_{0}^{l} \frac{d x}{\left(x^{2}+y^{2}\right)^{3 / 2}} \hat{k}
$$

$$
=-\frac{\mu_{\Delta} J_{t}}{4 \pi}\left[\frac{x}{y^{2} \sqrt{x^{2}+y^{2}}}\right]_{0}^{l} \hat{k}
$$

$$
=-\frac{\mu_{0} I y}{4 \pi}\left[\frac{l}{\left.y^{2} \sqrt{l^{2}+y^{2}}\right]} \hat{k}\right.
$$

$$
=\frac{\mu_{0} I l}{4 \pi x \times \sqrt{R^{2}+x^{2}}} \hat{R} \text { (le out of page) }
$$

b) For all points on y axis $\overrightarrow{d l} \times \hat{\pi}=0$

$$
\vec{B}=0
$$

3. (20 marks) A single rectangular loop of wire of dimensions $a=180 \mathrm{~cm}$ and $b=620 \mathrm{~cm}$ is situated, as shown in the figure, with part inside a region with uniform magnetic field of 0.920 T , and part outside the field. The total resistance in the loop is 0.150Ω. The loop is pulled to the right. (Neglect any effects of gravity.)

5 a) Give the direction of the current flow in the loop (clockwise or counterclockwise) and explain your reasoning.
$15 \mathrm{~b})$ What force is required to pull the loop at a constant velocity of $5.20 \mathrm{~m} / \mathrm{s}$?

b) $|E|=\frac{d \Phi_{B}}{d t}=B \frac{d A}{d t}=B a v$

$$
\begin{aligned}
& I=\frac{\varepsilon}{R}=\frac{B a v}{R} \\
& F_{B}=I_{a} \beta=\frac{B a v}{R} a B=\frac{B^{2} a^{2} v}{R}
\end{aligned}
$$

If velocity is constant $F=F_{B}$

$$
\begin{aligned}
\because F & =\frac{(0.920 T)^{2}(1.80 \mathrm{~m})^{2} 5.20 \mathrm{~m} / \mathrm{s}}{0.150 \Omega} \\
F & =95.1 \mathrm{~N}
\end{aligned}
$$

version:

$$
\begin{aligned}
& F=\frac{(1.520 T)^{2}(2.80 \mathrm{~m})^{2} 5.20 \mathrm{~m} / \mathrm{s}}{0.250 \Omega} \\
& F=377 \mathrm{~N}
\end{aligned}
$$

4. (20 marks) An inductor and a resistor appear in series in a circuit (see figure). At one instant the potential difference, $V_{a b}$ across the pair is 3.05 V while the current is 450 mA and is increasing at a rate of $200 \mathrm{~mA} / \mathrm{s}$. At a later instant, the potential difference is 2.15 V while the current is 400 mA and is decreasing at a rate of $260 \mathrm{~mA} / \mathrm{s}$. Determine the inductance, L, of the coil and the value, R, of the resistance.

$$
\begin{aligned}
& V_{\text {tot }}=L \frac{d i}{d t}+R i \\
& 3.05=L \times 200 \times 10^{-3}+R \times 450 \times 10^{-3} \\
& 2.15=-L \times 260 \times 10^{-3}+R \times 400 \times 10^{-3} \\
& 1.3 \times 0+(2) \\
& 6.115=R \times 985 \times 10^{-3} \\
& R=6.21 \Omega \\
& 3.05=L \times 200 \times 10^{-3}+6.21 \times 450 \times 10^{-3} \\
& L=1.28 \mathrm{H}
\end{aligned}
$$

β version:

$$
\begin{aligned}
& 5.15=L \times 280 \times 10^{-3}+R \times 350 \times 10^{-3} \\
& 1.85=-L \times 120 \times 10^{-3}+R \times 200 \times 10^{-3} \\
& \frac{12}{28} \times 0+(2) \\
& 4.057=0.35 R \Rightarrow R=11.6 \Omega \\
& 5.15=L \times 280 \times 10^{-3}+11.6 \times 350 \times 10^{-3} \\
& L=3.90 H
\end{aligned}
$$

