208 Mid-Term 1 POINTS TABLE	
Multiple Choice (out of 20)	
Problem 1 (out of 20)	
Problem 2 (out of 20)	
Problem 3 (out of 20)	
Problem 4 (out of 20)	
TOTAL SCORE (out of 100)	

Multiple Choice Answers:

Version A:
MCI. D
MCI. B

MC3. DIE
$M C 4 . C$

$$
\begin{array}{ll}
\text { Version } B: \\
M C 1 . & C \\
M C 2 . & D \\
M C 3 & B, C \\
M C 4 . & B
\end{array}
$$

Version
A

1. (20 marks) A point charge $\mathrm{q}_{1}=-80.0 \mathrm{nC}$ is located at $(x, y)=(2.00 \mathrm{~m}, 1.00 \mathrm{~m})$, and a point charge $\mathrm{q}_{2}=-60.0 \mathrm{nC}$ is located at $(x, y)=(0.00,-2.00 \mathrm{~m})$. Determine the net electric field, magnitude and direction, at the origin of the (x, y) coordinate system.

$$
\begin{aligned}
& E_{1, x}=+\frac{k\left|q_{1}\right|}{r^{2}} \cos \theta \\
& E_{1, y}=+\frac{k\left|q_{1}\right|}{r^{2}} \sin \theta \\
& E_{2, x}=0 \\
& E_{2, y}=-\frac{k\left|q_{2}\right|}{r^{2}}
\end{aligned}
$$

$$
\cos \theta=\frac{2}{\sqrt{5}}
$$

$$
\sin \theta=\frac{1}{\sqrt{5}}
$$

$$
\begin{aligned}
& E_{\text {Net ,x }}=E_{1, x}+E_{2, x}=129 \mathrm{~N} / \mathrm{c} \\
& E_{\text {Net }, y}=E_{1, y}+E_{2, y}=64.4 \mathrm{~N} / \mathrm{c}-135 \mathrm{~N} / c=-70.6 \mathrm{~N} / \mathrm{c}
\end{aligned}
$$

$$
\begin{aligned}
\left|\vec{E}_{\text {Net }}\right| & =\sqrt{(129 \mathrm{~N} / \mathrm{c})^{2}+(70.6 \mathrm{~N} / \mathrm{c})^{2}} \\
& =147 \mathrm{~N} / \mathrm{c} \\
\longrightarrow_{\mathrm{E}_{\text {Net }}} & \phi
\end{aligned} \quad \begin{aligned}
& \\
& \tan ^{-1}\left(\frac{70.6}{129}\right)=28.7^{\circ} \\
& \text { below the }
\end{aligned}
$$

below the horizontal

$$
\begin{aligned}
& E_{1, x}=+\frac{\left(9 \times 10^{9}\right)(80 \mathrm{nc})}{(\sqrt{5} \mathrm{~m})^{2}} \cdot \frac{2}{\sqrt{5}} \\
& =129 \mathrm{~N} / \mathrm{C} \\
& E_{1, y}=\frac{\left(9 \times 10^{9}\right)(80 \mathrm{nc})}{(\sqrt{5} \mathrm{~m})^{2}} \frac{1}{\sqrt{5}}=64.4 \mathrm{~N} / \mathrm{c} \\
& E_{2, y}=-\frac{\left(9 \times 10^{9}\right)(60 \mathrm{c})}{(2 \mathrm{~m})^{2}}=-135 \mathrm{~N} / \mathrm{c}
\end{aligned}
$$

version

1. (20 marks) A point charge $\mathrm{q}_{1}=+60.0 \mathrm{nC}$ is located at $(x, y)=(2.00 \mathrm{~m}, 1.00 \mathrm{~m})$, and a point charge $\mathrm{q}_{2}=+80.0 \mathrm{nC}$ is located at $(x, y)=(0.00,-2.00 \mathrm{~m})$. Determine the net electric field, magnitude and direction, at the origin of the (x, y) coordinate system.

$$
\begin{aligned}
& E_{1, x}=\frac{-k\left|q_{1}\right|}{r^{2}} \cos \theta \\
& E_{1, y}=\frac{-k\left|q_{1}\right|}{r^{2}} \sin \theta \\
& E_{2, x}=0 \\
& E_{2, y}=+\frac{k\left|q_{2}\right|}{r^{2}}
\end{aligned}
$$

$$
E_{1, x}=\frac{-\left(9 \times 10^{9}\right)(60 n c)}{(\sqrt{5} \mathrm{~m})^{2}} \cdot \frac{2}{\sqrt{5}}
$$

$$
=-96.6 \mathrm{~N} / \mathrm{C}
$$

$$
E_{1, y}=\frac{-\left(9 \times 10^{9}\right)(60 \mathrm{nC})}{(\sqrt{5 m})^{2}} \cdot \frac{1}{\sqrt{5}}=-48.3 \mathrm{~N} / \mathrm{c}
$$

$$
E_{2, y}=\frac{\left(9 \times 10^{9}\right)(80 \mathrm{nC})}{(2 \mathrm{~m})^{2}}=180 \mathrm{~N} / \mathrm{C}
$$

$$
E_{\text {Net }, x}=E_{1, x}+E_{2, x}=-96.6 \mathrm{~N} / \mathrm{C}
$$

$$
E_{\text {Net, y }}=E_{1, y}+E_{2, y}=-48.3 \mathrm{~N} / \mathrm{C}+180 \mathrm{~N} / \mathrm{C}=132 \mathrm{~N} / \mathrm{C}
$$

$$
\begin{aligned}
\left|\vec{E}_{\text {Net }}\right| & =\sqrt{(96.6)^{2}+(132)^{2}} \\
& =163 \mathrm{~N} / \mathrm{C} \\
\phi & =\tan ^{-1}\left(\frac{132}{96.6}\right)=53.8^{\circ}
\end{aligned}
$$

above the

A
2. (20 marks) Charge $+Q$ is distributed evenly throughout the volume of an insulating sphere that has radius R. Assume that the potential $V=0$, at $r=\infty$. Calculate the potential at a radius of $r=\mathrm{R} / 3$.

$$
\rho=\frac{Q}{V}=\frac{Q}{\frac{4}{3} \pi R^{3}}
$$

for $\quad r>R, E\left(4 \pi r^{2}\right)=\frac{Q}{\varepsilon_{0}}$

$$
\begin{aligned}
E & =\frac{Q}{4 \pi \varepsilon_{0} r^{2}} \\
V(r=\infty)-V(r=R) & =\int_{\infty}^{R} \frac{Q}{4 \pi \varepsilon_{0} r^{2}} d r=-\left.\frac{Q}{4 \pi \varepsilon_{0} r}\right|_{\infty} ^{R} \\
\Rightarrow-V(r=R) & =-\frac{Q}{4 \pi \varepsilon_{0} R} \Rightarrow V(r=R)=+\frac{Q}{4 \pi \varepsilon_{0} R}
\end{aligned}
$$

for $r<R, \quad E\left(4 \pi r^{2}\right)=\frac{Q_{\text {enc }}}{\varepsilon_{0}}=\rho \frac{V_{\text {enc }}}{\varepsilon_{0}}$

$$
\begin{aligned}
& =\frac{Q}{4 / 3 \pi R^{3}} \cdot \frac{\frac{4}{3} \pi r^{3}}{\varepsilon_{0}} \\
\Rightarrow E & =\frac{Q r}{4 \pi \varepsilon_{0}^{3}} \\
V(r=R)-V(r=R / 3) & =\int_{R}^{R / 3} \frac{Q r}{4 \pi \varepsilon_{0} R^{3}} d r=\left.\frac{Q r^{2}}{8 \pi \varepsilon_{0} R^{3}}\right|_{R} ^{B / 3} \\
\Rightarrow \frac{Q}{4 \pi \varepsilon_{0} R}-V(r=R / 3) & =\frac{Q}{72 \pi \varepsilon_{0} R}-\frac{Q}{8 \pi \varepsilon_{0} R}=-\frac{Q}{9 \pi \varepsilon_{0} R} \\
\Rightarrow V(r=R / 3) & =\frac{Q}{4 \pi \varepsilon_{0} R}+\frac{Q}{9 \pi \varepsilon_{0} R}=\frac{13 Q}{36 \pi \varepsilon_{0} R}
\end{aligned}
$$

2. (20 marks) Charge $+Q$ is distributed evenly throughout the volume of an insulating sphere that has radius R. Assume that the potential $V=0$, at $r=\infty$. Calculate the potential at a radius of $r=\mathrm{R} / 2$.

$$
\rho=\frac{Q}{V}=\frac{Q}{4 / 3 \pi R^{3}}
$$

for $r>R, E\left(4 \pi r^{2}\right)=\frac{Q}{\varepsilon_{0}}$

$$
\begin{aligned}
V(r=\infty) & -V(r=R)=\int_{\infty}^{R} \frac{Q}{4 \pi \varepsilon_{0} r^{2}} d r=-\left.\frac{Q}{4 \pi \varepsilon_{0} r}\right|_{\infty} ^{R} \\
& \Rightarrow-V(r=R)=-\frac{Q}{4 \pi \varepsilon_{0} R} \Rightarrow V(r=R)=+\frac{Q}{4 \pi \varepsilon_{0} R}
\end{aligned}
$$

for $r<R, E\left(4 \pi r^{2}\right)=\frac{Q_{e n c}}{\varepsilon_{0}}=\mathcal{L} \frac{V_{e n c}}{\varepsilon_{0}}$

$$
=\frac{Q}{413 \pi R^{3}} \cdot \frac{4 / 3 \pi r^{3}}{\varepsilon_{0}}
$$

$$
\begin{aligned}
& \Longrightarrow E=\frac{Q r}{4 \pi \varepsilon_{0} R^{3}} \\
& V(r=R)-V(r=R / 2)=\int_{R / 2}^{R / Q r} \\
& \frac{Q}{4 \pi \varepsilon_{0} R^{3}} d r=\left.\frac{Q r^{2}}{8 \pi \varepsilon_{0} R^{3}}\right|_{R} ^{R / 2} \\
& \Rightarrow V(r=R / 2)=\frac{Q}{32 \pi \varepsilon_{0} R}-\frac{Q}{8 \pi \varepsilon_{0} R}=\frac{-3 Q}{32 \pi \varepsilon_{0} R} \\
& \Rightarrow V(r=R / 2)=\frac{Q}{4 \pi \varepsilon_{0} R}+\frac{3 Q}{32 \pi \varepsilon_{0} R}=\frac{11 Q}{32 \pi \varepsilon_{0} R}
\end{aligned}
$$

3. (20 marks) A hollow (but not necessarily empty) conducting spherical shell has an inner radius of 8.00 cm and an outer radius of 10.0 cm . There is an electric field at the inner surface of the shell, E_{i}, which has a magnitude of $80.0 \mathrm{~N} / \mathrm{C}$ and points toward the center of the sphere at all points on the inner surface. The electric field at the outer surface of the shell, E_{0}, has a magnitude of $80.0 \mathrm{~N} / \mathrm{C}$ and points away from the center of the sphere (as shown) at all points on the outer surface. Determine the magnitude of the charge on: a) the inner surface and b) the outer surface of the spherical shell.

$$
\begin{array}{ll}
r_{i}=0.08 \mathrm{~m} & E\left(r_{i}\right)=-80 \frac{\mathrm{~N}}{\mathrm{c}} \text { (inward) } \\
r_{0}=0.10 \mathrm{~m} & E\left(r_{0}\right)=+80 \frac{\mathrm{~N}}{\mathrm{c}} \text { (outward) }
\end{array}
$$

for $r<r_{i}, E\left(4 \pi r^{2}\right)=\frac{Q_{e n c}}{\varepsilon_{0}}$

$$
\Rightarrow E=\frac{Q_{\operatorname{enc}}}{4 \pi \varepsilon_{0} r^{2}}
$$ charge within cavity of spherical shell

at $r \rightarrow r_{i} \quad E=\frac{Q_{e n c}}{4 \pi \varepsilon_{0} r_{i}^{2}}=-80 \frac{\mathrm{~N}}{\mathrm{C}}$

$$
\begin{aligned}
& 4 \pi \varepsilon_{0} r_{i} \\
& \Rightarrow Q_{e n c}=-80 \frac{N}{c}\left(4 \pi \varepsilon_{0}\right)(0.08 \mathrm{~m})^{2} \\
&=-5.68 \times 10^{-11} \mathrm{c}
\end{aligned}
$$

for $r_{i}<r<r_{0}, E=0$ (inside the conductor)

$$
\begin{array}{r}
\Rightarrow E\left(4 \pi r^{2}\right)=\frac{Q_{\text {enc }}+Q_{i}}{\varepsilon_{0}}=0 \\
\Rightarrow Q_{i}=-Q_{\text {enc }}=+5.68 \times 10^{-11} \mathrm{c}
\end{array}
$$

for $r>r_{0}, E\left(4 \pi r^{2}\right)=\frac{Q_{\text {enc }}+Q_{i}+Q_{0}}{\varepsilon_{0}}=\frac{Q_{0}}{\varepsilon_{0}}$

$$
\Rightarrow E=\frac{Q_{0}}{4 \pi \varepsilon_{0} r^{2}}
$$

at $r=r_{0} \quad E=\frac{Q_{0}}{4 \pi \varepsilon_{0} r_{0}^{2}}=+80 \frac{\mathrm{~N}}{\mathrm{C}}$

$$
\Rightarrow Q_{0}=80 \frac{\mathrm{~N}}{\mathrm{c}}\left(4 \pi \varepsilon_{0}\right)(0.10 \mathrm{~m})^{2}=\left[+8.89 \times 10^{-11} \mathrm{c}\right.
$$

3. (20 marks) A hollow conducting spherical shell has an inner radius of 8.00 cm and an outer radius of 10.0 cm . The electric field at the inner surface of the shell, E_{i}, has a magnitude of $40.0 \mathrm{~N} / \mathrm{C}$ and points toward the center of the sphere, and the electric field at the outer surface, E_{0}, has a magnitude of 40.0 N/C and points away from the center of the sphere (as shown).
Determine the magnitude of the charge on: a) the inner surface and b) the outer surface of the spherical shell.

$$
\begin{aligned}
& r_{i}=0.08 \mathrm{~m} \\
& r_{0}=0.10 \mathrm{~m}
\end{aligned}
$$

for $r<r_{i}, E\left(4 \pi r^{2}\right)=\frac{\text { Qenc }}{\varepsilon_{0}}$

$$
\Rightarrow E=\frac{Q_{e n c}}{4 \pi \varepsilon_{0} r^{2}}
$$

where $Q_{\text {enc }} \equiv$ charge within cavity of spherical shell
at $\left.r r_{i} \quad E=\frac{Q_{\text {enc }}}{4 \pi \varepsilon_{0} r_{i}^{2}}=-40 \frac{\mathrm{~N}}{\mathrm{c}} \quad \begin{array}{l}\text { negative for } \\ \text { inward direct }\end{array}\right)$

$$
\begin{aligned}
\Rightarrow Q_{\text {eric }} & =-40 \frac{N}{c}\left(4 \pi \varepsilon_{0}\right)(0.08 \mathrm{~m})^{2} \\
& =-284 \times 10^{-11} \mathrm{c}
\end{aligned}
$$

for $r_{i}<r<r_{0}, E=0$ (inside the conductor)

$$
\begin{aligned}
\Rightarrow E\left(4 \pi r^{2}\right) & =\frac{Q_{e n c}+Q_{i}}{\varepsilon_{0}}=0 \\
\Rightarrow Q_{i} & =-Q_{e n c}=+284 \times 10^{-11} c
\end{aligned}
$$

for $r>r_{0}, E\left(4 \pi r^{2}\right)=\frac{Q_{e r i c}+Q_{i}+Q_{0}}{\varepsilon_{0}}=\frac{Q_{0}}{\varepsilon_{0}}$

$$
\Rightarrow E=\frac{Q_{0}}{4 \pi \varepsilon_{0} r^{2}}
$$

$$
\begin{aligned}
& \text { at } r=r_{0} \quad E=\frac{Q_{0}}{4 \pi \varepsilon_{0} r_{0}^{2}}=+40 \mathrm{~N} / \mathrm{C} \\
& \Rightarrow Q_{0}=40 / k\left(4 \pi \varepsilon_{0}\right)(0.10 \mathrm{~m})^{2}=+4.44 \times 10^{-11} \mathrm{c}
\end{aligned}
$$

version
A
4. (20 marks) The electric potential inside a $10-\mathrm{m}$ long linear particle accelerator is given by $V=\left(3000-5 x^{2} / \mathrm{m}^{2}\right) \mathrm{V}$, where \boldsymbol{x} is the distance from the left plate along the accelerator tube, as shown in the figure.
a) Determine an expression for the electric field along the accelerator tube.
b) A proton is released (from rest) at $\boldsymbol{x}=4 \mathrm{~m}$. Calculate the acceleration of the proton just after it is released.
c) What is the impact speed of the proton when (and if) it collides with the plate.
a.)

$$
\begin{gathered}
E_{x}=-\frac{\partial v}{\partial x}=(+10 x .) \frac{v}{m^{2}} \\
\vec{E}=(10 x) \frac{v}{m^{2}} \hat{\imath}
\end{gathered}
$$

b.)

$$
\begin{aligned}
\vec{a}=\frac{\vec{F}}{m} & =\frac{q \vec{E}}{m}=\frac{q}{m}(10 x) \frac{\mathrm{m}}{\mathrm{~m}^{2}} \hat{\imath} \\
& =\frac{1.6 \times 10^{-19} \mathrm{c}}{1.67 \times 10^{-27} \mathrm{~kg}} \cdot 10.4 \mathrm{~m} \frac{\mathrm{v}}{\mathrm{~m}^{2}} \hat{\imath} \\
& =3.83 \times 10^{9} \mathrm{~m} / \mathrm{s}^{2} \hat{\imath}
\end{aligned}
$$

(accelerating to the right plate)
c.)

$$
\begin{aligned}
& v_{0}=0 \quad v_{f}=? \\
& W=-\Delta u=\Delta K=1 / 2 m v_{f}^{2}-1 / 2 m v_{0}^{2} \\
& U_{i}-u_{f}=1 / 2 m v_{f}^{2} \\
& \begin{aligned}
& U(x)=q V(x)=q\left(3000-5 x^{2} / \mathrm{m}^{2}\right) \mathrm{V} \\
& U(x=4 m)-U(x=10 m)=q[-5(16) \mathrm{V}+5(100) \mathrm{V}] \\
&=1.6 \times 10^{-19} \mathrm{C}(420 \mathrm{~V})=6.72 \times 10^{-17} \mathrm{~J} \\
& \frac{1}{2} m v_{f}^{2}= 6.72 \times 10^{-17 \mathrm{~J}} \\
& \Rightarrow v_{=}=\sqrt{\frac{2\left(6.72 \times 10^{-17} \mathrm{~J}\right)}{1.67 \times 10^{-27} \mathrm{~kg}}}=2.84 \times 10^{5} \frac{\mathrm{~m}}{\mathrm{~s}}
\end{aligned}
\end{aligned}
$$

version
B
4. (20 marks) The electric potential inside a $10.0-\mathrm{m}$ long linear particle accelerator is given by $V=\left(2000+5 x^{2} / \mathrm{m}^{2}\right) V$, where x is the distance from the left plate along the accelerator tube, as shown in the figure.
a) Determine an expression for the electric field along the accelerator tube.
b) A proton is released (from rest) at $\boldsymbol{x}=4.00 \mathrm{~m}$. Calculate the acceleration (magnitude and
 direction) of the proton just after it is released.
c) What is the impact speed of the proton when (and if) it collides with one of the end-plates.
a.)

$$
\begin{gathered}
E_{x}=-\frac{\partial V}{\partial x}=(-10 x) \frac{V}{m^{2}} \\
\vec{E}=(-10 x) \frac{V}{m^{2}} \hat{\imath}
\end{gathered}
$$

b.)

$$
\vec{a}=\frac{\vec{F}}{m}=\frac{q \vec{E}}{m}=\frac{q}{m}(-10 x) \frac{v}{m^{2}} \hat{h}
$$

$$
=\frac{1.6 \times 10^{-19} \mathrm{C}}{1.67 \times 10^{-27} \mathrm{~kg}}(-10.4 \mathrm{~m}) \frac{v}{\mathrm{~m}^{2}} \hat{i}
$$

$$
=-3.83 \times 10^{9} \mathrm{~m} / \mathrm{s}^{2} \hat{\imath}
$$

(accelerating to the left
c.)

$$
v_{0}=0 \quad v_{f}=?
$$ plate)

$$
W=-\Delta U=\Delta K=1 / 2 m v_{f}^{2}-1 / 2 m v_{0}^{2}
$$

$$
u_{i}-u_{f}=1 / 2 m v_{f}^{2}
$$

$$
\begin{aligned}
& U(x)=q V(x)=q\left(2000+5 x^{2} / \mathrm{m}^{2}\right) \mathrm{V} \\
& \begin{aligned}
U(x=4 \mathrm{~m}) & -U(x=0 \mathrm{~m})=q[5(16) \mathrm{V}-5(0) \mathrm{V}] \\
& =1.6 \times 10^{-19} \mathrm{C}(80 \mathrm{~V})=1.28 \times 10^{-17} \mathrm{~J}
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow 1 / 2 \mathrm{~m} v_{f}^{2} & =1.28 \times 10^{-17} \mathrm{~J} \\
v_{f} & =\sqrt{\frac{2\left(1.28 \times 10^{-17} \mathrm{~J}\right)}{1.67 \times 10^{-27} \mathrm{~kg}}}=1.24 \times 10^{5} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

