Physics 208, Spring 2015 - Exam \#3

A

Name (Last, First):
ID \#: \qquad
Section \#: \qquad

- You have 75 minutes to complete the exam.
- Formulae are provided on a separate colored sheet. You may NOT use any other formula sheet.
- You may use only a simple calculator: one without memory, or with a memory demonstrated to be cleared.
- For the Multiple Choice questions, full credit (5 points) is only given if the correct answer or answers is (are) clearly marked.
- When calculating numerical values, be sure to keep track of units. Results must include proper units.
- Be alert to the number of significant figures in the information given. Results must have the correct number of significant figures.
- If you are unable to solve a problem whose solution is needed in another problem, then assign a symbol for the solution of the first problem and use that symbol in solving the second problem.
- If you need additional space to answer a problem, use the back of the sheet it is written on.
- Show your work. Without supporting work, the answer alone is worth nothing.
- Mark your answers clearly by drawing boxes around them.
- Please write clearly. You may gain marks for a partially correct calculation if your work can be deciphered.

208 Mid-Term 3 POINTS TABLE	
Multiple Choice (out of 20)	
Problem 1 (out of 20)	
Problem 2 (out of 20)	
Problem 3 (out of 20)	
Problem 4 (out of 20)	
TOTAL SCORE (out of 100)	

MC1. (5 points) Two electrons, labeled A and B, are accelerated to different velocities and then sent into a region containing a constant, uniform magnetic field with unknown direction. The electrons' initial velocities are in the $+x$ direction, and they enter the B-field region at the origin. Within the field region, they follow curved paths confined to the $x y$-plane ($z=0$), then emerge at different locations on the y-axis: electron A emerges at $y=a$, and electron B emerges at $y=b$, where $b>a$ as shown.

What is the direction of the uniform magnetic field in the region $x>0$?
a. $+x$ direction (to the right)
b. $-x$ direction (to the left)
c. $+y$ direction (upward)
d. $-y$ direction (downward).
e. $+z$ direction (out of the page)
f. $-z$ direction (into the page)

MC2. (5 points) A tiny wire loop of radius a, carrying a counterclockwise current i, is placed inside a long solenoid as shown. The solenoid has N turns and carries a current I in the direction shown.

What is the direction of the torque on the loop?
a. $+\hat{X}$
b. $-\hat{x}$
c. $+\hat{y}$
d. $-\hat{y}$
e. $+\hat{z}$
f. $-\hat{z}$

MC3. (5 points) A solid, infinitely long rod of radius a and lies along the z axis. It carries a current I in the $+z$ direction (out of the page). The current is uniformly distributed across the rod. It is surrounded, at a distance b, by a thin coaxial conducting shell that carries a current of the same magnitude, but directed in the $-z$ direction.

Which of the following drawings most accurately represents the component B_{y} of the magnetic field at points on the positive \boldsymbol{x}-axis?

MC4. (5 points) A very long straight wire runs along the y-axis and carries a time-dependent current $I(t)$ in the upward $(+y)$ direction, thereby creating a time-varying magnetic field. The graph on the right side of the figure below shows the time dependence of this current: it begins at zero at time $t=0$, and is gradually increased in the manner shown. A circular copper ring is placed next to the straight wire and is oriented so that it lies in the $x-y$ plane.

The magnitude of the EMF induced in the copper ring is:
a. smaller at time $t=0$ than at time $t=10$ seconds.
b. larger at time $t=0$ than at time $t=10$ seconds.
c. the same at times $t=0$ and $t=10$ seconds.

And at time $t=3$ seconds, the current induced in the copper ring is:
a. in the clockwise direction.
b. in the counter-clockwise direction.
c. zero.
(Note: Both questions above must be marked with the correct answer to receive credit.)

1. (20 marks) A circular coil 28.0 cm in diameter and containing 18 loops lies flat on the ground. The Earth's magnetic field at this location has magnitude $5.80 \times 10^{-5} \mathrm{~T}$ and points into the earth at an angle of $\theta=61.0^{\circ}$ below a line pointing due north (see figure at left). If a 9.30-A counterclockwise (looking down on the coil) current passes through the coil, determine
a) the torque on the coil in vector notation (axes as indicated in figure on right); and
b) which edge of the coil rises up, north, east, south or west (assuming negligible mass).

2. (20 marks) A pair of point charges, $\mathrm{q}_{1}=9.00 \mu \mathrm{C}$ and $\mathrm{q}_{2}=-6.00 \mu \mathrm{C}$, are moving as shown in the figure with speeds $\mathrm{v}_{1}=6.50 \times 10^{4} \mathrm{~m} / \mathrm{s}$ and $\mathrm{v}_{2}=4.60 \times 10^{4} \mathrm{~m} / \mathrm{s}$. When the charges are at the location shown in the figure, find:
a) the magnitude and direction of the magnetic field produced at the origin, and
b) the magnitude and direction of the magnetic force that q_{2} exerts on q_{1}.

3. (20 marks) A circular coil containing 50 loops of wire with radius $r=35 \mathrm{~cm}$ and resistance R $=0.460 \Omega$ is in a region of spatially uniform magnetic field directed into the plane of the figure. At $t=0, B=0$. The magnetic field then begins increasing, with $B(t)=\left(0.560 \mathrm{~T} / \mathrm{s}^{3}\right) t^{3}$.
a) What is the current in the loop (magnitude and direction) at the instant when $\mathrm{B}=1.56 \mathrm{~T}$?
b) What is the power being dissipated in the loop at that instant?

4. (20 marks) A $1200-\mathrm{pF}$ capacitor is charged to 100 V and then quickly connected to an inductor. The frequency of the subsequent oscillation is 720 kHz . Determine
a) the inductance L of the inductor
b) the peak value of the current in the inductor, and
c) the maximum energy stored in its magnetic field.
