## Physics 208, Spring 2015 – Exam #1



Name (Last, First):

ID #: \_\_\_\_\_

Section #: \_\_\_\_\_

\

• You have 75 minutes to complete the exam.

- · Formulae are provided on a separate colored sheet. You may NOT use any other formula sheet.
- $\cdot\;$  You may use only a simple calculator: one without memory, or with a memory demonstrated to be cleared.
- · When calculating numerical values, be sure to keep track of units. Results must include proper units.
- · Be alert to the number of significant figures in the information given. Results must have the correct number of significant figures.
- If you are unable to solve part of a problem whose solution is needed in another part of the problem, then assign a symbol for the solution of the first part and use that symbol in solving the second/later part of the problem.
- If you need additional space to answer a problem, use the back of the sheet it is written on **AND ensure to note on the main page of** the problem that you have continued your work overleaf.
- · Also, Show your work. Without supporting work, the answer alone is worth nothing.
- · Mark your answers clearly by drawing boxes around them.
- $\cdot~$  This booklet has 7 pages. DO NOT remove any sheets.
- · Please write clearly. You may gain marks for a partially correct calculation if your work can be deciphered.

| Multiple Choice | Problem 1   | Problem 2   | Problem 3   | Problem 4   | TOTAL        |
|-----------------|-------------|-------------|-------------|-------------|--------------|
| (20 points)     | (20 points) | (20 points) | (20 points) | (20 points) | (100 points) |
|                 |             |             |             |             |              |

## MULTIPLE CHOICE: <u>Clearly mark the correct option(s)</u> [Each MC: 5 points. Total: 20 points]

1. A net positive charge  $+Q_0$  is placed on a *conducting* parallelepiped. The length of *all sides* of the parallelepiped is **a**. Consider the three Gaussian surfaces – a cubic surface, a parallelepiped and a spherically symmetric surface as shown in figures labeled A, B and C below.



Which of the following are <u>correct statements</u> for the <u>magnitude of the E-field at point P</u> that is located a distance 2a from the center of the conducting parallelepiped as shown in the figures above. [In the options below,  $\sigma$  represents the surface charge density and  $\mathbf{k} = 1/4\pi\varepsilon_0$ ].

- i) The E-field at P is  $\frac{kQ_0}{4a^2}$  if we choose the Gaussian surface in figure A
- ii) The E-field at P is  $\sigma/\varepsilon_0$  if we choose the Gaussian surface in figure A
- iii) The E-field at P is  $\frac{kQ_0}{4a^2}$  if we choose the Gaussian surface in figure B
- iv) The E-field at P is  $\sigma/\varepsilon_0$  if we choose the Gaussian surface in figure B
- v) The E-field at P can only be  $\frac{kQ_0}{4a^2}$  if we choose the Gaussian surface in figure C
- vi) None of the above Gaussian surfaces can be used to estimate the E-field at point P.
- vii) The E-field at Point P is *zero* because the charges are in the inner parallelepiped and not *ON* the Gaussian surface.

| 2. | Four point charges, <i>with a net charge of zero</i> are placed in a circle as shown in the adjoining figure. Select the <i>correct direction</i> for the total electric field at the center of the circle and mark your choice in the options below. |                                                     | +2q                                   |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------|
|    | i)                                                                                                                                                                                                                                                    | Along direction A                                   |                                       |
|    | ii)                                                                                                                                                                                                                                                   | In sector/quadrant B.                               | -a                                    |
|    | iii)                                                                                                                                                                                                                                                  | Along direction C                                   | · · · · · · · · · · · · · · · · · · · |
|    | iv)                                                                                                                                                                                                                                                   | In sector/quadrant D.                               | +q $-2q$                              |
|    | v)                                                                                                                                                                                                                                                    | Along direction E                                   |                                       |
|    | vi)                                                                                                                                                                                                                                                   | In sector/quadrant F.                               | DB                                    |
|    | vii)                                                                                                                                                                                                                                                  | Along direction G                                   | E <                                   |
|    | viii)                                                                                                                                                                                                                                                 | In sector/quadrant H.                               | F H                                   |
|    | ix)                                                                                                                                                                                                                                                   | None of the above. The net E-field at the center is | \¥<br>G                               |
|    |                                                                                                                                                                                                                                                       | zero by Gauss's law.                                | 9                                     |

| 3. A solid conducting sphere of radius <i>b</i> carries a net charge of |                      |
|-------------------------------------------------------------------------|----------------------|
| -Q. Select the correct option on the right panel, for the               | a. $-kQ/b$           |
| electric potential $V(r)$ at a radial distance of $(r = b/2)$ from      | b. $-2kQ/b$          |
| the center of the sphere, with respect to the potential of the          | c. $-4kQ/b$          |
| sphere at infinity. [Note: $k = 1/4\pi\varepsilon_0$ ]                  | d. $-kQ/2b$          |
|                                                                         | e. $-kQ/4b$          |
|                                                                         | f. Zero.             |
|                                                                         | g. None of the above |
|                                                                         | ç                    |
|                                                                         |                      |

| 4. Select the correct option on the right panel for the work done         |                   |
|---------------------------------------------------------------------------|-------------------|
| by the electric field when the $-Q$ charge is moved from its              | a. $-kQ^2/a$      |
| location at $x=0$ to $x=2a$ , as shown in the figure, while the           | b. $+kQ^{2}/a$    |
| two positive charges are held at rest. [Note: $k = 1/4\pi\varepsilon_0$ ] | c. $-2kQ^2/a$     |
|                                                                           | d. $-kQ^2/2a$     |
| + Q - Q + Q                                                               | e. $+kQ^{2}/2a$   |
|                                                                           | f. $-1.33 kQ^2/a$ |
| $-a$ 0 $a$ $\uparrow$ 2a                                                  | g. $-0.67kQ^2/a$  |
|                                                                           | h. $-kQ^2/\pi a$  |
|                                                                           | i. $+kQ^2/\pi a$  |
|                                                                           | j. Zero           |
|                                                                           |                   |

- 1. (20 marks) Two 1.0-cm-diameter conducting spheres have a total charge of 75.0  $\mu$ C (shared between them) and are placed 1.05 m apart. The spheres are not connected to each other.
  - a) If the force each exerts on the other is 11.0 N and is attractive, what is the charge on each?b) If the force each exerts on the other is 11.0 N and is repulsive, what is the charge on each?

- 2. (20 marks) Find the total electric field  $\mathbf{E}$  (as a vector) at the origin O in the figure as a result of the charges  $Q_1$  and  $Q_2$ , under the following conditions:
  - a) The distances  $\ell$  are 25cm, and the charges are  $Q_1 = +5.0 \ \mu C$  and  $Q_2 = +10.0 \ \mu C$ ;
  - b) The values of  $\ell$  and  $Q_1$  are the same as in part (a) but  $Q_2 = -10.0 \ \mu C$ .



3. (20 marks) A thin cylindrical shell of radius  $R_1 = 3.0$  cm is surrounded by a second concentric cylindrical shell of radius  $R_2 = 7.0$  cm. Both cylinders are 7.0 m long and the inner one carries a total charge  $Q_1 = -4.8 \ \mu C$  and the outer one  $Q_2 = +5.6 \ \mu C$ . The charges are uniformly distributed over the respective cylinders. For points far from the ends of the cylinders, determine the electric field at a radial distance r from the central axis for the following cases:

(a) r = 2.8 cm; (b) r = 5.0 cm; (c) r = 9.0 cm



4. (20 marks) A thin rod of length 2L is centered on the x axis as shown in the figure. The rod carries a uniformly distributed charge Q. Determine the potential V as a function of y for points along the positive y axis. Let V = 0 at infinity.

