Physics 208, Spring 2015 - Exam \#1

Name (Last, First): \qquad
ID \#: \qquad
Section \#: \qquad

[^0]| Multiple Choice
 (20 points) | Problem 1
 (20 points) | Problem 2
 $(20$ points $)$ | Problem 3
 $(20$ points $)$ | Problem 4
 $(20$ points $)$ | TOTAL
 $(100$ points $)$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | |

MULTIPLE CHOICE: Clearly mark the correct option(s) [Each MC: 5 points. Total: 20 points]

1. A net positive charge $+Q_{0}$ is placed on a conducting parallelepiped. The length of all sides of the parallelepiped is \boldsymbol{a}. Consider the three Gaussian surfaces - a cubic surface, a parallelepiped and a spherically symmetric surface as shown in figures labeled A, B and C below.

Which of the following are correct statements for the magnitude of the E-field at point \mathbf{P} that is located a distance $2 a$ from the center of the conducting parallelepiped as shown in the figures above. [In the options below, σ represents the surface charge density and $\boldsymbol{k}=\mathbf{1} / \mathbf{4} \boldsymbol{\pi} \boldsymbol{\varepsilon}_{\mathbf{0}}$].
i) The E-field at P is $\frac{k Q_{0}}{4 a^{2}}$ if we choose the Gaussian surface in figure A
ii) The E-field at P is σ / ε_{0} if we choose the Gaussian surface in figure A
iii) The E-field at P is $\frac{k Q_{0}}{4 a^{2}}$ if we choose the Gaussian surface in figure B
iv) The E-field at P is σ / ε_{0} if we choose the Gaussian surface in figure B
v) The E-field at P can only be $\frac{k Q_{0}}{4 a^{2}}$ if we choose the Gaussian surface in figure C
vi) None of the above Gaussian surfaces can be used to estimate the E-field at point P.
vii) The E-field at Point P is zero because the charges are in the inner parallelepiped and not $O N$ the Gaussian surface.
2. Four point charges, with a net charge of zero are placed in a circle as shown in the adjoining figure. Select the correct direction for the total electric field at the center of the circle and mark your choice in the options below.
i) Along direction A
ii) In sector/quadrant B.
iii) Along direction C
iv) In sector/quadrant D.
v) Along direction E
vi) In sector/quadrant F.
vii) Along direction G
viii) In sector/quadrant H .
ix) None of the above. The net E-field at the center is zero by Gauss's law.

3. A solid conducting sphere of radius \boldsymbol{b} carries a net charge of $-Q$. Select the correct option on the right panel, for the electric potential $V(r)$ at a radial distance of $(\boldsymbol{r}=\boldsymbol{b} / \mathbf{2})$ from
a. $-k Q / b$ the center of the sphere, with respect to the potential of the
b. $-2 k Q / b$ sphere at infinity. [Note: $k=1 / 4 \pi \varepsilon_{0}$]
c. $-4 k Q / b$
d. $-k Q / 2 b$
e. $-k Q / 4 b$
f. Zero.
g. None of the above
4. Select the correct option on the right panel for the work done by the electric field when the $-Q$ charge is moved from its
a. $-k Q^{2} / a$ location at $x=0$ to $x=2 a$, as shown in the figure, while the
b. $+k Q^{2} / a$ two positive charges are held at rest. [Note: $k=1 / 4 \pi \varepsilon_{0}$]
c. $-2 k Q^{2} / a$
d. $-k Q^{2} / 2 a$

e. $+k Q^{2} / 2 a$
f. $-1.33 k Q^{2} / a$
g. $-0.67 k Q^{2} / a$
h. $-k Q^{2} / \pi a$
i. $+k Q^{2} / \pi a$
j. Zero

1. ($\mathbf{2 0}$ marks) Two $1.0-\mathrm{cm}$-diameter conducting spheres have a total charge of $75.0 \mu \mathrm{C}$ (shared between them) and are placed 1.05 m apart. The spheres are not connected to each other.
a) If the force each exerts on the other is 11.0 N and is attractive, what is the charge on each?
b) If the force each exerts on the other is 11.0 N and is repulsive, what is the charge on each?
2. (20 marks) Find the total electric field \mathbf{E} (as a vector) at the origin O in the figure as a result of the charges Q_{1} and Q_{2}, under the following conditions:
a) The distances ℓ are 25 cm , and the charges are $\mathrm{Q}_{1}=+5.0 \mu \mathrm{C}$ and $\mathrm{Q}_{2}=+10.0 \mu \mathrm{C}$;
b) The values of ℓ and Q_{1} are the same as in part (a) but $\mathrm{Q}_{2}=-10.0 \mu \mathrm{C}$.

3. (20 marks) A thin cylindrical shell of radius $R_{I}=3.0 \mathrm{~cm}$ is surrounded by a second concentric cylindrical shell of radius $R_{2}=7.0 \mathrm{~cm}$. Both cylinders are 7.0 m long and the inner one carries a total charge $Q_{1}=-4.8 \mu C$ and the outer one $Q_{2}=+5.6 \mu C$. The charges are uniformly distributed over the respective cylinders. For points far from the ends of the cylinders, determine the electric field at a radial distance r from the central axis for the following cases:
(a) $r=2.8 \mathrm{~cm}$;
(b) $r=5.0 \mathrm{~cm}$;
(c) $r=9.0 \mathrm{~cm}$

4. (20 marks) A thin rod of length $2 L$ is centered on the x axis as shown in the figure. The rod carries a uniformly distributed charge Q. Determine the potential V as a function of y for points along the positive y axis. Let $V=0$ at infinity.

[^0]: - You have 75 minutes to complete the exam.
 - Formulae are provided on a separate colored sheet. You may NOT use any other formula sheet.
 - You may use only a simple calculator: one without memory, or with a memory demonstrated to be cleared.
 - When calculating numerical values, be sure to keep track of units. Results must include proper units.
 - Be alert to the number of significant figures in the information given. Results must have the correct number of significant figures.
 - If you are unable to solve part of a problem whose solution is needed in another part of the problem, then assign a symbol for the solution of the first part and use that symbol in solving the second/later part of the problem.
 - If you need additional space to answer a problem, use the back of the sheet it is written on AND ensure to note on the main page of the problem that you have continued your work overleaf.
 - Also, Show your work. Without supporting work, the answer alone is worth nothing.
 - Mark your answers clearly by drawing boxes around them.
 - This booklet has 7 pages. DO NOT remove any sheets.
 - Please write clearly. You may gain marks for a partially correct calculation if your work can be deciphered.

