1) [8 pts] Gauss' Law. A solid insulating sphere of radius R is uniformly charged with total charge Q and placed at the origin. Use Gauss' law to determine the electric field for a radius $r<R$ (i.e. inside the sphere) :
solid insulating sphere

(A) $E(r)=k Q / r^{\wedge} 2$
(B) $E(r)=k Q r / R^{\wedge} 3$ correct
(C) $E(r)=k Q r / 2 R^{\wedge} 3$
(D) $E(r)=k Q / r R$
(E) $E(r)=k Q / 2 r^{\wedge} 2$
(F) $E(r)=k Q r^{\wedge} 2 / R^{\wedge} 4$
2) [8 pts] Electric Field. An electron and a proton are separated by a distance of 5 nm (see figure). The electric field at their midpoint is :

(A) 0
(B) $2.3 \times 10^{6} \mathrm{~N} / \mathrm{C}$ in the direction of the electron
(C) $2.3 \times 10^{6} \mathrm{~N} / \mathrm{C}$ in the direction of the proton
(D) $1.15 \times 10^{8} \mathrm{~N} / \mathrm{C}$ in the direction of the electron
(E) $1.15 \times 10^{8} \mathrm{~N} / \mathrm{C}$ in the direction of the proton
(F) $4.6 \times 10^{8} \mathrm{~N} / \mathrm{C}$ in the direction of the electron correct
(G) $4.6 \times 10^{8} \mathrm{~N} / \mathrm{C}$ in the direction of the proton
3) [6 pts] Electric Potential Energy. A proton (charge e and mass m) is approaching a stationary mercury nucleus (charge 80e) head on. When it is far away, the proton's speed is v_{0}. What is the distance of closest approach $\mathrm{d}_{\text {min }}$ of the proton to the nucleus ?

(A) 0
(B) $\left[\mathrm{k} \mathrm{e} /\left(\mathrm{mv}_{0}\right)\right]^{1 / 2}$
(C) $80 \mathrm{ke} /\left(\mathrm{mv}_{0}\right)$
(D) $2 \mathrm{ke}^{2} /\left(\mathrm{mv}_{0}{ }^{2}\right)$
(E) $\left[80 \mathrm{k} \mathrm{e}^{2} /\left(\mathrm{mv}_{0}{ }^{2}\right)\right]^{1 / 2}$
(F) $160 \mathrm{k} \mathrm{e}^{2} /\left(\mathrm{mv}_{0}{ }^{2}\right)$ correct
4) [8 pts] Electric Potential. Four charges of equal magnitude are placed on the corners of a square of sidelength a. Three of the charges are positive $\left(Q_{1,2,3}=Q>0\right)$ and 1 is negative ($Q_{4}=-Q$). The total potential energy of this configuration (with the convention $\mathrm{U}(\mathrm{r} \rightarrow \infty)=0$) is :

(A) $4 \mathrm{kQ}^{2} / \mathrm{a}$
(B) $2 \mathrm{kQ}^{2} / \mathrm{a}$
(C) $\mathrm{kQ}^{2} / \mathrm{a}$
(D) $0 \quad$ correct
(E) $-2 \mathrm{kQ}^{2} / \mathrm{a}$
(F) $-4 \mathrm{kQ}^{2} / \mathrm{a}^{2}$
5) [6 pts] Energy in Capacitor. An air-filled insulated parallel-plate capacitor is held at a fixed charge. If the separation of its plates is doubled, the electric energy stored in the capacitor is :
(A) $1 / 4$ of the original
(B) $1 / 2$ of the original
(C) unchanged
(D) doubled correct
(E) quadrupled
6) [8 pts] Electric Power. A light bulb has a power output of 60 W . The bulb is connected to a 24 V battery. The current drawn from the battery and the resistance of the light bulb are :
(A) 0.2 A and 0.104Ω
(B) 0.2 A and 1.4Ω
(C) 0.4 A and 0.104Ω
(D) 0.4 A and 240Ω
(E) 2.5 A and 0.104Ω
(F) 2.5 A and 9.6Ω correct
7) [6 pts] Discharging RC Unit. Consider a simple RC circuit with an initially charged capacitor of capacitance $\mathrm{C}=1 \mathrm{mF}$ and unknown resistance R . When closing the switch, the current drops to 10% of its initial value within a time of 1.8 s . The resistance in this circuit is :
(A) 53Ω
(B) 140Ω
(C) 482Ω
(D) 783Ω correct
(E) 1280Ω
(F) 4145Ω
8) [6 pts] Lorentz Force. A laboratory has its four corridors marked with the north, south, east and west directions. It is in a uniform magnetic field that points downward (into the ground); there is no electric field. A negatively charged particle moves north. The Lorentz force on the particle points to :
(A) North
(B) South
(C) East
(correct)
(D) West
(E) Up
(F) Down
9) [8 pts] Magnetic Force from Current. A long straight wire carries an unknown current I. A negatively charged particle $(Q=-2 \mathrm{mC})$ at 2 cm from the wire has a velocity of $50 \mathrm{~m} / \mathrm{s}$ along the direction of the wire (see figure). The particle experiences a force of $6 \mu \mathrm{~N}$ towards the wire. Determine the magnitude and direction of the current.

(A 1.91 A along the electron's velocity
(B) 1.91 A opposite the electron's velocity
(C) 6 A along the electron's velocity
(D) 6 A opposite the electron's velocity correct
(E) 18.8 A along the electron's velocity
(F) 18.8 A opposite the electron's velocity
10) [6 pts] Magnetic Induction. To determine the strength B of a uniform magnetic field in his laboratory, an engineer uses a solenoid (a long magnetic coil of radius \mathbf{r} with \mathbf{N} windings), rotating it at an angular frequency $\omega=2 \pi \mathrm{f}$ about an axis perpendicular to the magnetic field and to the symmetry axis along the solenoid. He detects an induced EMF with a maximal value of ε. The magnetic field strength is :

(A) $\mathrm{B}=\varepsilon / \mathrm{N} \pi \mathrm{r}^{2} \omega$ correct
(B) $B=\varepsilon \omega / N \pi r^{2}$
(C) $B=\varepsilon \pi \mathrm{r}^{2} / \mathrm{N} \omega$
(D) $B=2 \pi r / N \omega \varepsilon$
(E) $\mathrm{B}=\mathrm{N} \varepsilon / 2 \pi r \omega$
(F) $\mathrm{B}=\varepsilon / \mathrm{N} 2 \pi r \omega$
11) [8 pts] RL Unit. A resistor (resistance R) and an inductor (inductance L) are connected in series to a battery with EMF ε, with switch initially at position (a) (see figure). At $t=0$, the switch is flipped to position (b) to remove the battery from the circuit (see figure), and the current starts to drop off as $I(t)=I_{0} \exp (-t / \tau)$. The magnitude of the voltage across the
 inductor at $\mathrm{t}=0$ and after a long time are :
(A) 0 and 0
(B) 0 and ε
(C) 0 and RI_{0}
(D) RI_{0} and 0 correct
(E) Rl_{0} and RI_{0}
(F) ε and RI_{0}
12) [6 pts] Displacement Current. An air-filled parallel-plate capacitor is being charged leading to an increase of its electric field from 0 to $12000 \mathrm{~V} / \mathrm{m}$ over a time interval of 1.5 s . Compute the displacement current through a $(25 \mathrm{~cm})^{2}$ area parallel to the plates inside the capacitor.
(A) $1.8 \times 10^{-10} \mathrm{~A}$
(B) $4.4 \times 10^{-9} \mathrm{~A}$ correct
(C) $1.7 \times 10^{-9} \mathrm{~A}$
(D) $1.0 \times 10^{-8} \mathrm{~A}$
(E) $0.33 \times 10^{-7} \mathrm{~A}$
(F) $0.33 \times 10^{-5} \mathrm{~A}$
13) [8 pts] EM Plane Wave. The electric field of a plane wave is described by $\vec{E}=\mathrm{E}_{0} \sin (\mathrm{ky}-\omega \mathrm{t}) \hat{k}$. The velocity and the magnetic field of this wave are oriented in :
(A) x - and y-direction
(B) x - and z-direction
(C) y - and x-direction correct
(D) y - and z-direction
(E) z - and x-direction
(F) z - and y-direction
14) [8 pts] Energy in EM wave. An electromagnetic wave has a B-field of amplitude $2^{*} 10^{-6} \mathrm{~T}$. The wave irradiates an area of $0.5 \mathrm{~m}^{2}$. Calculate the intensity of the wave and the time it takes to deposit 1 kJ onto the irradiated area.
(A) $1.59 \times 10^{-6} \mathrm{~W} / \mathrm{m}^{2}$ and $1.3 \times 10^{8} \mathrm{~s}$
(B) $1.59 \times 10^{-6} \mathrm{~W} / \mathrm{m}^{2}$ and 25 s
(C) $477 \mathrm{~W} / \mathrm{m}^{2}$ and 4.2 s correct
(D) $477 \mathrm{~W} / \mathrm{m}^{2}$ and 1.1 s
(E) $1.3 \times 10^{5} \mathrm{~W} / \mathrm{m}^{2}$ and 0.015 s
(F) $1.3 \times 10^{5} \mathrm{~W} / \mathrm{m}^{2}$ and 0.12 s
