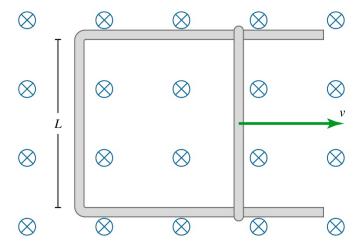
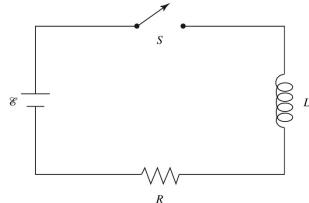

- 1) [10 pts.] Charged particle Lorentz force; A particle of charge +12 mC is moving at a speed of 130 m/s in the positive x-direction through a uniform magnetic field. The particle is experiencing a Lorentz force in negative y-direction of magnitude 3 N. The magnetic field is
- (A) B= 0.1 T in pos. z-direction
- (B) B=0.1 T in neg. z-direction
- (C) B=0.4 T in pos. z-direction
- (D) B=0.4 T in neg. z-direction
- (E) B= 0.8 T in pos. z-direction
- (F) B=0.8 T in neg. z-direction
- (G) B=1.9 T in pos. z-direction
- (H) B=1.9 T in neg. z-direction
- 2) [8 pts.] Proton in a Magnetic Field; A proton (charge +e, mass 1.67*10⁻²⁷ kg) is moving in the x-y-plane at an unknown speed. A uniform magnetic field of strength 2.8 T, directed in positive z-direction, is causing the proton to be in a uniform circular motion. Calculate the frequency (revolutions per second) of the proton's periodic motion.
 - (The centripetal force is $F=mv^2/r$)
- (A) 520 Hz
- (B) 13000 Hz
- (C) $4.3 \cdot 10^7 \text{ Hz}$
- (D) $2.7 \cdot 10^8 \text{ Hz}$
- (E) $5.6 \cdot 10^{17} \text{ Hz}$
- (F) $9.8 \cdot 10^{18} \text{ Hz}$
- 3) [10 pts.] Circular loop torque; A circular wire loop of radius 0.15 m is lying in the x-y plane as illustrated, carrying a current of 1.8 A resulting in a magnetic moment pointing in the positive z-direction. A uniform magnetic field of magnitude B = 0.4 T is pointing in the positive x-direction. Determine the torque acting on it.
- (A) $\tau = 0.48 \text{ Nm in pos. x-dir.}$
- (B) $\tau = 0.51 \text{ Nm in neg. x-dir.}$
- (C) $\tau = 0.21$ Nm in neg. y-dir.
- (D) $\tau = 0.051 \text{ Nm in pos. y-dir.}$
- (E) $\tau = 0.021$ Nm in pos. y-dir.
- (F) $\tau = 0.048$ Nm in neg. x-dir.

- 4) [6 pts.] Lorentz Force work; The work done by the Lorentz force acting on and electron moving in a uniform magnetic field (no electric field)
- (A) depends on the angle between the electron's velocity and the B-field
- (B) is positive, keeping the electron on a circular path
- (C) is negative, keeping the electron on a circular path
- (D) keeps changing sign during the electron's motion
- (E) is zero
- (F) none of above.
- 5) [10 pts.] Thick wire magnetic field; A thick wire with circular cross-sectional area of radius R carries a uniform current density j. The magnetic field inside the wire, at a radius r < R from its center, is
- (A) $B = \frac{1}{2} \mu_0 j r$
- (B) B = $\mu_0 j / r$
- (C) $B = 2 \mu_0 / (j r)$
- (D) $B = 2\pi \mu_0 j r^2$
- (E) $B = \mu_0 j / r^2$
- (F) $B = 2\pi \mu_0 j r^3$
- 6) [10 pts.] Long wire forces; An infinitely long wire-1 carries a current $I_1 = 2 I_0$. A second straight wire-2 of finite length L runs parallel to wire-1 at a distance d and carries a current $I_2 = I_0$ in opposite direction. The Lorentz force on wire-2 is
- (A) $F_{12} = (\mu_0/\pi) d I_0^2 / L$ attractive
- (B) $F_{12} = (\mu_0/\pi) L I_0^2 / d$ attractive
- (C) $F_{12} = (\mu_0/\pi) L^2 I_0^2 / d$ attractive
- (D) $F_{12} = (\mu_0/\pi) L I_0^2 / d$ repulsive
- (E) $F_{12} = (\mu_0/\pi) L^2 I_0^2 / d^2$ attractive
- (F) $F_{12} = (\mu_0/\pi) L^2 I_0^2 / d$ repulsive
- (G) $F_{12} = (\mu_0/\pi) 2L I_0^2 / d$ repulsive



7) [8 pts.] Current loop in changing B field; A current loop of radius R is located in the x-y-plane and immersed in a uniform magnetic field pointing in the positive z-direction. The magnetic field strength increases at a given rate dB/dt. What is the magnitude and direction (as viewed from


the pos. z-direction) of the EMF induced in the current loop? (cw=clockwise, ccw=counter-clockwise)

- (A) $\varepsilon = 2 \pi R^2 dB/dt$ ccw
- (B) $\varepsilon = 4 \pi R dB/dt$ ccw
- (C) $\varepsilon = 2 \pi R dB/dt ccw$
- (D) $\varepsilon = 4 \pi R^2 dB/dt$ cw
- (E) $\varepsilon = 2 \pi R dB/dt$ cw
- (F) $\varepsilon = \pi R^2 dB/dt$ cw
- 8) [8 pts.] Movable wire; A movable wire of length L is part of a current loop that is immersed in a uniform constant magnetic field of strength B pointing into the plane, and parallel to the normal vector of the loop, as shown below. The wire is pulled to the right with a speed of v. Calculate the magnitude of the EMF and the direction of the current induced in the loop.
- (A) BLv ccw
- (B) BL/v cw
- (C) Bv/L ccw
- (D) B/Lv cw
- (E) BL²/v ccw
- (F) 0 cw

- 9) [6 pts.] Moving metal bar; Consider a metal bar (length 1.2 m) on the front grill of a car moving at 30 m/s on a highway. Assume the bar to be perpendicular to the Earth's magnetic field (directed vertically up), with a field strength of 0.5 Gauss (1 T = 10^4 Gauss). Calculate the induced voltage ΔV between the ends of the bar.
- (A) 2.4 * 10⁻⁶ V
- (B) 2.4 * 10⁻⁵ V
- (C) $6.3 * 10^{-4} V$
- (D) 3.6 * 10⁻⁴ V
- (E) $1.8 * 10^{-3} V$
- (F) 0.08 V

- 10) [6 pts.] Changing current in coil; The current through a coil is ramped up steadily from 0 to 2 A during a 0.1 s time interval. It is found to induce an EMF of 1.4 V in the coil. What is the inductance of the coil?
- (A) 2.8 H
- (B) 0.70 H
- (C) 0.36 H
- (D) 0.28 H
- (E) 0.070 H
- (F) 0.036 H
- 11) [8 pts.] solenoid energy; What is the magnetic energy density in a long solenoid coil (800 windings, 0.5 m long, and area 0.3 m²) when a current of 5 A is run through it?
- (A) 0.2 J/m^3
- (B) 3.4 J/m^3
- (C) 10 J/m^3
- (D) 40 J/m^3
- (E) 505 J/m^3
- (F) 2000 J/m³
- 12) [10 pts.] LR circuit; In a simple LR circuit as shown below, a battery providing a voltage ε (ignore its internal resistance) is connected in series to a resistor (R) and an inductor (L). The switch is closed at time t=0, and the current starts to ramp up. Find the initial voltage across the inductor immediately after the switch has been closed, $V_L(t\rightarrow 0)$, and the long-time limit of the current in the loop, $I(t\rightarrow \infty)$.
- (A) ε and ε/L
- (B) ε and ε/R
- (C) ε and ε /LR
- (D) ε and ε L/R
- (E) 0 and ε/R
- (F) 0 and ε/L
- (G) 0 and ε/LR
- (H) 0 and $\varepsilon L/R$

