1) [10 pts.] Charged particle Lorentz force; A particle of charge +12 mC is moving at a speed of 130 m / s in the positive x -direction through a uniform magnetic field. The particle is experiencing a Lorentz force in negative y -direction of magnitude 3 N . The magnetic field is
(A) $\mathrm{B}=0.1 \mathrm{~T}$ in pos. z -direction
(B) $B=0.1 \mathrm{~T}$ in neg. z-direction
(C) $B=0.4 \mathrm{~T}$ in pos. z -direction
(D) $B=0.4 \mathrm{~T}$ in neg. z -direction
(E) $\mathrm{B}=0.8 \mathrm{~T}$ in pos. z -direction
(F) $\mathrm{B}=0.8 \mathrm{~T}$ in neg. z -direction
(G) B=1.9 T in pos. z-direction <<<correct
(H) B=1.9 T in neg. z-direction
2) [8 pts.] Proton in a Magnetic Field ; A proton (charge +e , mass $1.67 * 10^{-27} \mathrm{~kg}$) is moving in the x -y-plane at an unknown speed. A uniform magnetic field of strength 2.8 T , directed in positive z direction, is causing the proton to be in a uniform circular motion. Calculate the frequency (revolutions per second) of the proton's periodic motion.
(The centripetal force is $\mathrm{F}=\mathrm{mv}^{2} / \mathrm{r}$)
(A) 520 Hz
(B) 13000 Hz
(C) $4.3 \cdot 10^{7} \mathrm{~Hz} \quad \lll$ correct
(D) $2.7 \cdot 10^{8} \mathrm{~Hz}$
(E) $5.6 \cdot 10^{17} \mathrm{~Hz}$
(F) $9.8 \cdot 10^{18} \mathrm{~Hz}$
3) [10 pts.] Circular loop torque; A circular wire loop of radius 0.15 m is lying in the x - y plane as illustrated, carrying a current of 1.8 A resulting in a magnetic moment pointing in the positive z direction. A uniform magnetic field of magnitude $B=0.4 T$ is pointing in the positive x-direction. Determine the torque acting on it.
(A) $\tau=0.48 \mathrm{Nm}$ in pos. x-dir.
(B) $\tau=0.51 \mathrm{Nm}$ in neg. x-dir.
(C) $\tau=0.21 \mathrm{Nm}$ in neg. y-dir.
(D) $\tau=0.051 \mathrm{Nm}$ in pos. y-dir.
<<<correct
(E) $\tau=0.021 \mathrm{Nm}$ in pos. y-dir.
(F) $\tau=0.048 \mathrm{Nm}$ in neg. x-dir.

4) [6 pts.] Lorentz Force work; The work done by the Lorentz force acting on and electron moving in a uniform magnetic field (no electric field)
(A) depends on the angle between the electron's velocity and the B-field
(B) is positive, keeping the electron on a circular path
(C) is negative, keeping the electron on a circular path
(D) keeps changing sign during the electron's motion
(E) is zero <<<correct
(F) none of above.
5) [10 pts.] Thick wire magnetic field; A thick wire with circular cross-sectional area of radius R carries a uniform current density j. The magnetic field inside the wire, at a radius $r<R$ from its center, is
(A) $B=1 / 2 \mu_{0} j r \quad \lll$ correct
(B) $B=\mu_{0} j / r$
(C) $B=2 \mu_{0} /(j r)$
(D) $B=2 \pi \mu_{0} j r^{2}$
(E) $B=\mu_{0} j / r^{2}$
(F) $B=2 \pi \mu_{0} j r^{3}$
6) [10 pts.] Long wire forces; An infinitely long wire-1 carries a current $I_{1}=2 I_{0}$. A second straight wire- 2 of finite length L runs parallel to wire-1 at a distance d and carries a current $I_{2}=I_{0}$ in opposite direction. The Lorentz force on wire-2 is
(A) $\mathrm{F}_{12}=\left(\mu_{0} / \pi\right) \mathrm{d} \mathrm{I}_{0}^{2} / \mathrm{L} \quad$ attractive
(B) $F_{12}=\left(\mu_{0} / \pi\right) L I_{0}^{2} / d \quad$ attractive
(C) $F_{12}=\left(\mu_{0} / \pi\right) L^{2} I_{0}{ }^{2} / d$ attractive
(D) $F_{12}=\left(\mu_{0} / \pi\right) L I_{0}^{2} / d \quad$ repulsive \lll correct
(E) $F_{12}=\left(\mu_{0} / \pi\right) L^{2} I_{0}^{2} / d^{2}$ attractive
(F) $F_{12}=\left(\mu_{0} / \pi\right) L^{2} I_{0}^{2} / d \quad$ repulsive
(G) $F_{12}=\left(\mu_{0} / \pi\right) 2 L_{0}{ }^{2} / d \quad$ repulsive

7) [8 pts.] Current loop in changing B field; A current loop of radius R is located in the x - y-plane and immersed in a uniform magnetic field pointing in the positive z-direction. The magnetic field strength increases at a given rate $\mathrm{dB} / \mathrm{dt}$. What is the magnitude and direction (as viewed from
the pos. z-direction) of the EMF induced in the current loop? (cw=clockwise, ccw=counterclockwise)
(A) $\varepsilon=2 \pi R^{2} d B / d t \quad c c w$
(B) $\varepsilon=4 \pi \mathrm{RdB} / \mathrm{dt} \quad \mathrm{ccw}$
(C) $\varepsilon=2 \pi R \mathrm{~dB} / \mathrm{dt} \mathrm{ccw}$
(D) $\varepsilon=4 \pi \mathrm{R}^{2} \mathrm{~dB} / \mathrm{dt} \mathrm{cw}$
(E) $\varepsilon=2 \pi R \mathrm{~dB} / \mathrm{dt} \mathrm{cW}$
(F) $\varepsilon=\pi \mathrm{R}^{2} \mathrm{~dB} / \mathrm{dt} \quad \mathrm{cw} \quad \lll$ correct
8) [8 pts.] Movable wire; A movable wire of length L is part of a current loop that is immersed in a uniform constant magnetic field of strength B pointing into the plane, and parallel to the normal vector of the loop, as shown below. The wire is pulled to the right with a speed of v. Calculate the magnitude of the EMF and the direction of the current induced in the loop.
(A) BLv cow <<<correct
(B) BL/v cw
(C) Bv/L cow
(D) $B / L v \mathrm{cw}$
(E) $\mathrm{BL}^{2} / \mathrm{v} \mathrm{ccw}$
(F) 0 cw

9) [6 pts.] Moving metal bar; Consider a metal bar (length 1.2 m) on the front grill of a car moving at $30 \mathrm{~m} / \mathrm{s}$ on a highway. Assume the bar to be perpendicular to the Earth's magnetic field (directed vertically up), with a field strength of 0.5 Gauss ($1 \mathrm{~T}=10^{4}$ Gauss). Calculate the induced voltage ΔV between the ends of the bar.
(A) $2.4 * 10^{-6} \mathrm{~V}$
(B) $2.4 * 10^{-5} \mathrm{~V}$
(C) $6.3 * 10^{-4} \mathrm{~V}$
(D) $3.6 * 10^{-4} \mathrm{~V}$
(E) $1.8 * 10^{-3} \mathrm{~V} \quad \lll$ correct
(F) 0.08 V
10) [6 pts.] Changing current in coil; The current through a coil is ramped up steadily from 0 to 2 A during a 0.1 s time interval. It is found to induce an EMF of 1.4 V in the coil. What is the inductance of the coil?
(A) 2.8 H
(B) 0.70 H
(C) 0.36 H
(D) 0.28 H
(E) 0.070 H <<<correct
(F) 0.036 H
11) [8 pts.] solenoid energy; What is the magnetic energy density in a long solenoid coil (800 windings, 0.5 m long, and area $0.3 \mathrm{~m}^{2}$) when a current of 5 A is run through it?
(A) $0.2 \mathrm{~J} / \mathrm{m}^{3}$
(B) $3.4 \mathrm{~J} / \mathrm{m}^{3}$
(C) $10 \mathrm{~J} / \mathrm{m}^{3}$
(D) $40 \mathrm{~J} / \mathrm{m}^{3} \quad \lll$ correct
(E) $505 \mathrm{~J} / \mathrm{m}^{3}$
(F) $2000 \mathrm{~J} / \mathrm{m}^{3}$
12) [10 pts.] LR circuit; In a simple LR circuit as shown below, a battery providing a voltage ε (ignore its internal resistance) is connected in series to a resistor (R) and an inductor (L). The switch is closed at time $t=0$, and the current starts to ramp up. Find the initial voltage across the inductor immediately after the switch has been closed, $\mathrm{V}_{\mathrm{L}}(\mathrm{t} \rightarrow 0)$, and the long-time limit of the current in the loop, $\mathrm{I}(\mathrm{t} \rightarrow \infty)$.
(A) ε and ε / L
(B) ε and $\varepsilon / R \quad \lll$ correct
(C) ε and $\varepsilon / L R$
(D) ε and $\varepsilon L / R$
(E) 0 and ε / R
(F) 0 and ε / L
(G) 0 and $\varepsilon / L R$
(H) 0 and $\varepsilon L / R$

