## Exam-2 Phys-207 Spring '20

- 1) Parallel-plate capacitor energy [8 pts.] A parallel-plate capacitor with a non-zero charge is disconnected from any battery. If the separation of its plates is doubled, the electric energy stored in the capacitor is:
- (A) ¼ of the original
- (B) ½ of the original
- (C) unchanged
- (D) doubled << +8
- (E) quadrupled
- (F) 8 times the original
- 2) Parallel-plate capacitor with dielectric [8 pts.] A charged air-filled capacitor charged is connected to a 12 V battery. A sheet of dielectric with  $\kappa$ =5 is inserted completely filling the volume between its plates. As a result, the electric energy stored in the capacitor is:
- (A) 1/25 of the original
  (B) 1/5 of the original
  (C) unchanged
  (D) 5 times the original
  (E) 9 times the original
  (F) 25 times the original
- 3) Capacitor electric field [8 pts.] A fully charged parallel-plate capacitor with a plate separation of 12.5 mm and a capacitance of 10 μF stores 8 mJ of energy. Find the electric field strength inside the capacitor.
- (A) 42 V/m
- (B) 320 V/m
- (C) 1250 V/m
- (D) 2260 V/m
- (E) 3200 V/m << +8
- (F) 4200 V/m
- 4) Capacitor circuit [10 pts.] Consider the circuit shown with voltage V and 4 capacitors with equal capacitance C. Calculate the total capacitance and the final charge on capacitor 2, which is the top right-hand capacitor in the figure.



- (A)  $C_{tot} = 1/3 C$ ,  $Q_2 = 1/3 CV$ (B)  $C_{tot} = 2/3 C$ ,  $Q_2 = 2/3 CV$ (C)  $C_{tot} = 3/4 C$ ,  $Q_2 = (3/4) (V/C)$
- (D)  $C_{tot} = 4/3 C$ ,  $Q_2 = 1/3 CV << +10$
- (E)  $C_{tot} = 4/3 C$ ,  $Q_2 = 2/3 V$
- (F)  $C_{tot} = 5/3 C$ ,  $Q_2 = 1/3 C V$
- 5) wire current density [8 pts.] A current density of  $1.6 \times 10^6$  A/m<sup>2</sup> flows through a wire with a conduction electron density of  $8.5 \times 10^{28}$ /m<sup>3</sup>. What is the drift speed of the electrons?

(A)  $9.4 * 10^{-7} \text{ m/s}$ (B)  $4.2 * 10^{-6} \text{ m/s}$ (C)  $3.3 * 10^{-5} \text{ m/s}$ (D)  $1.2 * 10^{-4} \text{ m/s} <<+8$ (E)  $1.1 * 10^{-3} \text{ m/s}$ (F)  $3.5 * 10^{-2} \text{ m/s}$ 

- 6) terminal voltage [8 pts.] A battery has an EMF of 12.00 V. When you draw a current of 1.200 A from it, the terminal voltage is 10.64 V. What is terminal voltage when you draw a current of 0.600 A?
- (A) 5.30 V
  (B) 9.96 V
  (C) 10.48 V
  (D) 11.32 V << +8</li>
  (E) 11.68 V
  (F) 11.94 V
- 7) resistor network [10 pts.] For the configuration shown below a total resistance of  $R_{tot} = 2.33$  R is measured. The resistances  $R_1 = R_2 = R_3 = R$  are also known. Determine the value of the unknown

resistance R<sub>x</sub>.

(A)  $R_x = R/4$ (B)  $R_x = R/3$ (C)  $R_x = R/2$  << +10 (D)  $R_x = 2/3 R$ (E)  $R_x = R$ (F)  $R_x = 2R$ 



- 8) battery-resistor network [8 pts.] Consider the circuit shown below, with the current I<sub>1</sub> through R<sub>1</sub> going from left to right, the current I<sub>2</sub> through R<sub>2</sub> from top down and I<sub>3</sub> through R<sub>3</sub> from right to left. When applying the Kirchhoff loop rule to the left and to the right loop, respectively, one obtains:
- (A)  $V_a I_1 R_1 I_2 R_2 = 0$  and  $V_b I_3 R_3 I_2 R_2 = 0$
- (B)  $V_a I_1 R_1 I_2 R_2 = 0$  and  $V_b I_3 R_3 + I_2 R_2 = 0$  << +8
- (C)  $V_a + I_1 R_1 I_2 R_2 = 0$  and  $V_b I_1 R_1 I_2 R_2 = 0$
- (D)  $V_a + I_1 R_1 I_2 R_2 = 0$  and  $V_b I_1 R_1 I_3 R_3 = 0$
- (E)  $V_a + I_1 R_1 I_3 R_3 = 0$  and  $-V_b + I_3 R_3 + I_2 R_2 = 0$
- (F)  $V_a + I_1 R_1 I_2 R_2 = 0$  and  $V_b I_3 R_3 + I_2 R_2 = 0$



9) *lightbulb-circuits [8 pts.]* Order the circuits shown below according to their power output, from highest to lowest. All batteries have the same voltage, and all light bulbs have the same resistance.

| 1 | 2 | 3 | 4 |  |
|---|---|---|---|--|
|   |   |   |   |  |



- (A) 1 > 2 > 3 > 4
  (B) 1 > 3 > 4 > 2
  (C) 2 > 3 > 1 > 4
  (D) 2 > 4 > 1 > 3
  (E) 3 > 4 > 2 > 1
  (F) 3 > 1 > 2 > 4
  (G) 4 > 1 > 2 > 3
- (H) 4 > 2 > 3 > 1 << +8
- 10) *appliances power [8 pts.]* A 120 V outlet is protected by a 20 A circuit breaker. Select the pair of appliances with the maximum power output that can be operated at the same time from the same outlet.
- (A) a 1150 W waffle iron and a 1300 W space heater
- (B) a 1100 W playstation and a 850 W flat iron
- (C) a 1300 W microwave and a 1000 W waffle iron
- (D) a 1500 W blow dryer and a 850 W flat-iron << +8
- (E) a 1200 W toaster and a 1050 W leaf blower
- (F) a 1300 W microwave and a 900 W waffle iron
- 11) capacitor charging [8 pts.] You charge an initially uncharged capacitor through a 400  $\Omega$  resistor by means of a battery. After 0.1 s the capacitor reaches 90% of its maximum charge. What is the capacitance of the capacitor?
- (A) 109 μF <<+8
- (B) 220 μF
- (C) 92 μF
- (D) 2200 μF
- (E) 1100 μF
- (F) 550 μF

- 12) RC network [8 pts.] Consider the RC circuit shown in the diagram, with a battery voltage V. The 3 resistances are equal (R1 = R2 = R3 = R) and the 2 capacitances are also equal (C1 = C2 = C). What is the magnitude of the current supplied by the battery a long time after the switch is closed ?
- (A) 3V/R
  (B) 2V/R
  (C) V/R < +8</li>
  (D) V/2R
  (E) V/3R
  (F) 0 +2

