1) Parallel-plate capacitor energy [8 pts.] A parallel-plate capacitor with a non-zero charge is disconnected from any battery. If the separation of its plates is doubled, the electric energy stored in the capacitor is:
(A) $1 / 4$ of the original
(B) $1 / 2$ of the original
(C) unchanged
(D) doubled $\quad<++8$
(E) quadrupled
(F) 8 times the original
2) Parallel-plate capacitor with dielectric [8 pts.] A charged air-filled capacitor charged is connected to a 12 V battery. A sheet of dielectric with $\kappa=5$ is inserted completely filling the volume between its plates. As a result, the electric energy stored in the capacitor is:
(A) $1 / 25$ of the original
(B) $1 / 5$ of the original
(C) unchanged
(D) 5 times the original $\ll+8$
(E) 9 times the original
(F) 25 times the original
3) Capacitor electric field [8 pts.] A fully charged parallel-plate capacitor with a plate separation of 12.5 mm and a capacitance of $10 \mu \mathrm{~F}$ stores 8 mJ of energy. Find the electric field strength inside the capacitor.
(A) $42 \mathrm{~V} / \mathrm{m}$
(B) $320 \mathrm{~V} / \mathrm{m}$
(C) $1250 \mathrm{~V} / \mathrm{m}$
(D) $2260 \mathrm{~V} / \mathrm{m}$
(E) $3200 \mathrm{~V} / \mathrm{m} \ll+8$
(F) $4200 \mathrm{~V} / \mathrm{m}$
4) Capacitor circuit [10 pts.] Consider the circuit shown with voltage V and 4 capacitors with equal capacitance C. Calculate the total capacitance and the final charge on capacitor 2 , which is the top right-hand capacitor in the figure.

(A) $\mathrm{C}_{\text {tot }}=1 / 3 \mathrm{C}, \mathrm{Q}_{2}=1 / 3 \mathrm{CV}$
(B) $\mathrm{C}_{\text {tot }}=2 / 3 \mathrm{C}, \mathrm{Q}_{2}=2 / 3 \mathrm{CV}$
(C) $\mathrm{C}_{\text {tot }}=3 / 4 \mathrm{C}, \mathrm{Q}_{2}=(3 / 4)(\mathrm{V} / \mathrm{C})$
(D) $C_{\text {tot }}=4 / 3 \mathrm{C}, \mathrm{Q}_{2}=1 / 3 \mathrm{CV} \ll+10$
(E) $C_{\text {tot }}=4 / 3 \mathrm{C}, \mathrm{Q}_{2}=2 / 3 \mathrm{~V}$
(F) $\mathrm{C}_{\text {tot }}=5 / 3 \mathrm{C}, \mathrm{Q}_{2}=1 / 3 \mathrm{CV}$
5) wire current density [8 pts.] A current density of $1.6 * 10^{6} \mathrm{~A} / \mathrm{m}^{2}$ flows through a wire with a conduction electron density of $8.5 * 10^{28} / \mathrm{m}^{\wedge} 3$. What is the drift speed of the electrons?
(A) $9.4 * 10^{-7} \mathrm{~m} / \mathrm{s}$
(B) $4.2 * 10^{-6} \mathrm{~m} / \mathrm{s}$
(C) $3.3 * 10^{-5} \mathrm{~m} / \mathrm{s}$
(D) $1.2 * 10^{-4} \mathrm{~m} / \mathrm{s} \ll+8$
(E) $1.1 * 10^{-3} \mathrm{~m} / \mathrm{s}$
(F) $3.5 * 10^{-2} \mathrm{~m} / \mathrm{s}$
6) terminal voltage [8 pts.] A battery has an EMF of 12.00 V . When you draw a current of 1.200 A from it, the terminal voltage is 10.64 V . What is terminal voltage when you draw a current of 0.600 A?
(A) 5.30 V
(B) 9.96 V
(C) 10.48 V
(D) $11.32 \mathrm{~V} \quad \ll+8$
(E) 11.68 V
(F) 11.94 V
7) resistor network [10 pts.] For the configuration shown below a total resistance of $R_{\text {tot }}=2.33 \mathrm{R}$ is measured. The resistances $R_{1}=R_{2}=R_{3}=R$ are also known. Determine the value of the unknown
resistance R_{x}.
(A) $R_{x}=R / 4$
(B) $R_{x}=R / 3$
(C) $R_{x}=R / 2 \quad \ll+10$
(D) $R_{x}=2 / 3 R$
(E) $R_{x}=R$
(F) $R_{x}=2 R$

8) battery-resistor network [8 pts.] Consider the circuit shown below, with the current I_{1} through R_{1} going from left to right, the current I_{2} through R_{2} from top down and I_{3} through R_{3} from right to left. When applying the Kirchhoff loop rule to the left and to the right loop, respectively, one obtains:
(A) $V_{a}-I_{1} R_{1}-I_{2} R_{2}=0$ and $V_{b}-I_{3} R_{3}-I_{2} R_{2}=0$
(B) $V_{a}-I_{1} R_{1}-I_{2} R_{2}=0$ and $V_{b}-I_{3} R_{3}+I_{2} R_{2}=0 \quad \ll+8$
(C) $V_{a}+I_{1} R_{1}-I_{2} R_{2}=0$ and $V_{b}-I_{1} R_{1}-I_{2} R_{2}=0$
(D) $V_{a}+I_{1} R_{1}-I_{2} R_{2}=0$ and $V_{b}-I_{1} R_{1}-I_{3} R_{3}=0$
(E) $V_{a}+I_{1} R_{1}-I_{3} R_{3}=0$ and $-V_{b}+I_{3} R_{3}+I_{2} R_{2}=0$
(F) $V_{a}+I_{1} R_{1}-I_{2} R_{2}=0$ and $V_{b}-I_{3} R_{3}+I_{2} R_{2}=0$

9) lightbulb-circuits [8 pts.] Order the circuits shown below according to their power output, from highest to lowest. All batteries have the same voltage, and all light bulbs have the same resistance.

(A) $1>2>3>4$
(B) $1>3>4>2$
(C) $2>3>1>4$
(D) $2>4>1>3$
(E) $3>4>2>1$
(F) $3>1>2>4$
(G) $4>1>2>3$
(H) $4>2>3>1 \ll+8$
10) appliances power [8 pts.] A 120 V outlet is protected by a 20 A circuit breaker. Select the pair of appliances with the maximum power output that can be operated at the same time from the same outlet.
(A) a 1150 W waffle iron and a 1300 W space heater
(B) a 1100 W playstation and a 850 W flat iron
(C) a 1300 W microwave and a 1000 W waffle iron
(D) a 1500 W blow dryer and a 850 W flat-iron $\ll+8$
(E) a 1200 W toaster and a 1050 W leaf blower
(F) a 1300 W microwave and a 900 W waffle iron
11) capacitor charging [8 pts.] You charge an initially uncharged capacitor through a 400Ω resistor by means of a battery. After 0.1 s the capacitor reaches 90% of its maximum charge. What is the capacitance of the capacitor?
(A) $109 \mu \mathrm{~F} \ll+8$
(B) $220 \mu \mathrm{~F}$
(C) $92 \mu \mathrm{~F}$
(D) $2200 \mu \mathrm{~F}$
(E) $1100 \mu \mathrm{~F}$
(F) $550 \mu \mathrm{~F}$
12) RC network [8 pts.] Consider the RC circuit shown in the diagram, with a battery voltage V. The 3 resistances are equal ($R 1=R 2=R 3=R$) and the 2 capacitances are also equal ($C 1=C 2=C$). What is the magnitude of the current supplied by the battery a long time after the switch is closed?
(A) $3 V / R$
(B) $2 V / R$
(C) $V / R<+8$
(D) $V / 2 R$
(E) $V / 3 R$
(F) $0+2$
