
[8 pts.] Two separate capacitors of the same capacitance C are initially charged to $Q_1=2$ $\underline{\mu C}$ and $Q_2=8$ $\underline{\mu C}$. Then their positive plates are connected to each other and their negative plates are connected to each other. The final charges Q_{1F} and Q_{2F} become :
4 μC and 6 μC
5 μC and 5 μC
4 μC and 4 μC
3 μC and 7 μC
2 μC and 4 μC
3 μC and 3 μC 2) [8 pts.] A parallel-plate capacitor is held at a fixed voltage. If the separation of its plates is doubled, the electric energy stored in the capacitor is:
1/4 of the original
1/2 of the original
unchanged
doubled
quadrupled 3) [8 pts.] A charged air-filled capacitor is disconnected from the battery. A sheet of dielectric with κ =3 is inserted completely filling the volume between its plates. As a result, the electric energy stored in the capacitor is :
1/9 of the original
1/3 of the original
<u> </u>
unchanged

4)

[10 pts.] Consider the circuit shown with voltage V and 4 capacitors with equal capacitance C. Calculate the total capacitance and the final charge on capacitor 2.

$$C_{tot} = 0.25 C, Q_2 = 0.5 CV$$

$$C_{tot} = 0.4 C, Q_2 = 0.8 CV$$

$$C_{tot} = 1 C, Q_2 = 2 CV$$

$$C_{tot} = 0.25 C, Q_2 = 0.25 CV$$

$$C_{tot} = 0.4 C, Q_2 = 0.4 CV$$

$$C_{tot} = 1 C, Q_2 = 1 CV$$

5

5) [6 pts.] A current flows in an aluminum wire with a drift speed of the conduction electrons of 0.002 m/s. The conduction electron density in aluminum is 6.0×10²⁸/ m³. What is the current density in the wire?

$$3.3 \ 10^{24} \ A/m^2$$

$$3.0 \ 10^{31} A/m^2$$

$$4.3 \ 10^{20} \, A/m^2$$

$$1.2 \ 10^{26} A/m^2$$

$$1.92 \ 10^9 \, A/m^2$$

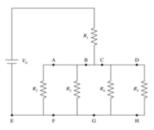
6)

) [8 pts.] Calculate the power used by a circuit that has a resistance of 150 Ω and draws a current of 0.4 A.

0.0026 W

0.16 W

24 W


60 W

150 W

375 W

7

[10 pts.] A voltage of V $_0$ = 24 V is supplied to the resistor configuration shown, with R $_1$ = 70 Ω and R $_2$ =R $_3$ =R $_4$ =R $_5$ = 200 Ω . Calculate the current through point A (i.e., through R $_2$) and through point B.

 $I_A = 0.15 A$, $I_B = 0.15 A$

 $I_A = 0.15 A$, $I_B = 0.3 A$

 $I_A = 0.05 A$, $I_B = 0.05 A$

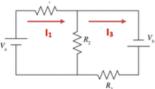
 $I_A = 0.05 A$, $I_B = 0.1 A$

 $I_A = 0.02 A$, $I_B = 0.04 A$

 $I_A = 0.01 A$, $I_B = 0.02 A$

8)

[8 pts.] Order the circuits shown below according to their power output, from highest to lowest. All batteries have the same voltage, and all light bulbs have the same resistance.


9)

[8 pts.] Five wires meet at a junction. In two of the wires, a current of I1 = 4.6 A and I2 = 2.7 A enters the junction, and in another two a current I3 = 2.4 and I4 = 5.3 exits the junction. Determine the current in wire 5.

0.2 A into the junction	
0.2 A out of the junction	
0.4 A into the junction	
0.4 A out of the junction	
0.6 A into the junction	

0.6 A out of the junction

10) [8 pts.] In the circuit shown V_a = 20 V and V_b = 5 V. Which of the following relations is correct (the arrows below define the direction of current flow for I₁ and I₃).

$$20 \ V - R_1 I_1 - 5 \ V + R_3 I_3 = 0$$

$$20 V + R_1 I_1 - 5 V - R_3 I_3 = 0$$

$$20 V - R_1 I_1 + 5 V + R_3 I_3 = 0$$

$$20 V + R_1 I_1 + 5 V - R_3 I_3 = 0$$

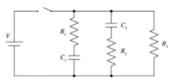
$$20 V - R_1 I_1 + 5 V - R_3 I_3 = 0$$

11)

l) [8 pts.] You charge an initially uncharged 68 mF capacitor through a 32 Ω resistor by means of a battery. After what time has the charge on the capacitor reached 90% of its maximum?

0.23 seconds

5 seconds


15 seconds

25 second

50 seconds

12)

[5 pts.] Consider the RC circuit shown in the diagram, with a battery voltage V. Before the switch is closed, both capacitors are uncharged. All the resistances are the ν same and equal to R, and the capacitances are C₂=2C₁.

What is the amount of current supplied by the battery immediately after the switch is <u>closed</u>?

	10
2	V
Э.	-

 $\frac{V}{R}$

 $\frac{2}{3} \frac{V}{R}$

 $\frac{1}{2} \frac{V}{R}$

 $\frac{1}{3} \frac{V}{R}$

1	2	1
-1	•	1
1		

 $13) \\ \label{eq:13}$) [5pts] Same circuit as problem 12. What is the amount of current supplied by the battery a long time after the switch is closed?

3 V R		
$\frac{V}{R}$		

$\frac{2}{3} \frac{V}{R}$	
$\frac{1}{2} \frac{V}{R}$	

V	
R	